【题目】如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB, DF.
(1)求证:DF是⊙O的切线;
(2)若DB平分∠ADC,AB=a,
∶DE=4∶1,写出求DE长的思路.
![]()
参考答案:
【答案】(1)证明见解析;(2)答案见解析
【解析】试题解析:(1)连接OD,由AC为圆O的直径,得∠ADC为直角,从而ΔCDE为直角,再由点F为CE的中点,得∠FDC=∠FCD,再由OD=OC得∠ODC=∠OCD,由∠FCD+∠OCD=90°得∠FDC+∠ODC=90°, 即DF是⊙O的切线;
(2)
由DB平分∠ADC,AC为⊙O的直径,证明△ABC是等腰直角三角形;
由AB=a,求出AC的长度为
;
由∠ACE=∠ADC=90°,∠CAE是公共角,证明△ACD∽△AEC,得到
;
设DE为x,由
∶DE=4∶1,求出
.
试题解析:(1)证明:连接OD.
![]()
∵ OD=CD,
∴ ∠ODC=∠OCD.
∵ AC为⊙O的直径,
∴ ∠ADC=∠EDC=90°.
∵ 点F为CE的中点,
∴ DF=CF.
∴ ∠FDC=∠FCD.
∴ ∠FDO=∠FCO.
又∵ AC⊥CE,
∴ ∠FDO=∠FCO=90°.
∴ DF是⊙O的切线.
(2)①由DB平分∠ADC,AC为⊙O的直径,证明△ABC是等腰直角三角形;
②AB=a,求出AC的长度为
;
③由∠ACE=∠ADC=90°,∠CAE是公共角,证明△ACD∽△AEC,得到
;
④设DE为x,由
∶DE=4∶1,求出
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一平面内的三条直线有哪几种位置关系?请画图说明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在等腰△ABC中,
(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;
(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.
①根据题意在图2中补全图形;
②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:
思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;
思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;
思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;
……
请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)
(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)

-
科目: 来源: 题型:
查看答案和解析>>【题目】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:
如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是( )

A.(2015,0)
B.(2015,1)
C.(2015,2)
D.(2016,0) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.

(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;
(2)表中a= , b= , 并请补全频数分布直方图;
(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是 .
相关试题