【题目】在第1个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第n个三角形的以An为顶点的内角的度数为______.
![]()
参考答案:
【答案】(
)n﹣180°
【解析】
先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第n个三角形的以An为顶点的内角的度数.
∵在△ABA1中,∠B=20°,AB=A1B,
∴∠BA1A=
==80°,
∵A1A2=A1C,∠BA1A是△A1A2C的外角,
∴∠CA2A1=
∠BA1A=
×80°=40°;
同理可得,
∠DA3A2=20°,∠EA4A3=10°,
∴第n个三角形的以An为顶点的内角的度数=(
)n﹣180°.
故答案为(
)n﹣180°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,则阴影部分的面积为 (写成两数平方差的形式);若将图1中的剩余纸片沿线段AB剪开,再把剪成的两张纸片拼成如图2的长方形,则长方形的面积是 (写成两个多项式相乘的形式);比较两图阴影部分的面积,可以得到一个公式: ;
(2)由此可知,通过图形的拼接可以验证一些等式.现在给你两张边长为a的正方形纸片、三张长为a,宽为b的长方形纸片和一张边长为b的正方形纸片(如图3所示),请你用这些纸片拼出一个长方形(所给纸片要用完),并写出它所验证的等式: .

-
科目: 来源: 题型:
查看答案和解析>>【题目】先阅读下面例题的解法,然后解答问题:
例:若多项式2x3-x2+m分解因式的结果中有因式2x+1,求实数m的值.
解:设2x3-x2+m=(2x+1)·A(A为整式).
若2x3-x2+m=(2x+1)·A=0,则2x+1=0或A=0.
由2x+1=0,解得x=-
.∴x=-
是方程2x3-x2+m=0的解. ∴2×(-
)3-(-
)2+m=0,即-
-
+m=0. ∴m=
.(1)若多项式x2+px-6分解因式的结果中有因式x-3,则实数p= ;
(2)若多项式x3+5x2+7x+q分解因式的结果中有因式x+1,求实数q的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为

A. 20° B. 25° C. 30° D. 40°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形AOBC的两边在坐标轴上,D是OB的中点,直线CD的函数关系式为y=2x﹣6,则△CDE的面积为 . (平方单位)

-
科目: 来源: 题型:
查看答案和解析>>【题目】根据图形填空:

(1)若直线ED,BC被直线AB所截,则∠1和__________是同位角.
(2)若直线ED,BC被直线AF所截,则∠3和__________是内错角.
(3)∠1和∠3是直线AB,AF被直线__________所截构成的__________角.
(4)∠2和∠4是直线__________,__________被直线BC所截构成的__________角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线AB∥DF,∠D+∠B=180°,

(1)求证:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度数.
相关试题