【题目】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C1处;作∠BPC1的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为( )![]()
A.![]()
B. ![]()
C.
D.![]()
参考答案:
【答案】C
【解析】解:由翻折的性质得,∠CPD=∠C′PD,
∵PE平分∠BPC1 ,
∴∠BPE=∠C′PE,
∴∠BPE+∠CPD=90°,
∵∠C=90°,
∴∠CPD+∠PDC=90°,
∴∠BPE=∠PDC,
又∵∠B=∠C=90°,
∴△PCD∽△EBP,
∴
=
,
即
=
,
∴y=
x(5﹣x)=﹣
(x﹣
)2+
,
∴函数图象为C选项图象.
故选:C.
根据翻折变换的性质可得∠CPD=∠C′PD,根据角平分线的定义可得∠BPE=∠C′PE,然后求出∠BPE+∠CPD=90°,再根据直角三角形两锐角互余求出∠CPD+∠PDC=90°,从而得到∠BPE=∠PDC,根据两组角对应相等的三角形相似求出△PCD和△EBP相似,根据相似三角形对应边成比例列式求出y与x的关系式,再根据二次函数的图象解答即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是( )

A.60°
B.120°
C.60°或120°
D.30°或150° -
科目: 来源: 题型:
查看答案和解析>>【题目】从边长为 a 的正方形内去掉一个边长为 b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )

A. (a-b)2=a2-2ab+b2 B. a2+ab=a (a+b) C. (a+b)2=a2+2ab+b2 D. a2-b2=(a+b)(a-b)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1 , S2 . 若S=3,则S1+S2的值为( )

A.24
B.12
C.6
D.3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点 D 是等腰直角 △ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且 BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,∠A=140°,∠D=80°.

(1)如图1,若∠B=∠C,试求出∠C的度数;
(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小华通过学习函数发现:若二次函数y=ax2+bx+c(a≠0)的图象经过点(x1 , y1),(x2 , y2)(x1<x2),若y1y2<0,则方程ax2+bx+c=0(a≠0)的一个根x0的取值范围是x1<x0<x2 , 请你类比此方法,推断方程x3+x﹣1=0的实数根x0所在范围为( )
A.﹣
<x0<0
B.0<x0<
C.
<x0<1
D.1<x0<
相关试题