【题目】如图,已知抛物线y=
x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
![]()
参考答案:
【答案】(1)y=
x2+2x+1(2)P(﹣
,﹣
)(3)Q(﹣4,1)或(3,1)
【解析】试题分析:(1)用待定系数法求出抛物线解析式即可;
(2)设点P(m,
m2+2m+1),表示出PE=﹣
m2﹣3m,再用S四边形AECP=S△AEC+S△APC=
AC×PE,建立函数关系式,求出极值即可;
(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.
试题解析:(1)∵点A(0,1).B(﹣9,10)在抛物线上,
∴
,
∴
,
∴抛物线的解析式为y=
x2+2x+1,
(2)∵AC∥x轴,A(0,1)
∴
x2+2x+1=1,
∴x1=﹣6,x2=0,
∴点C的坐标(﹣6,1),
∵点A(0,1).B(﹣9,10),
∴直线AB的解析式为y=﹣x+1,
设点P(m,
m2+2m+1)
∴E(m,﹣m+1)
∴PE=﹣m+1﹣(
m2+2m+1)=﹣
m2﹣3m,
∵AC⊥EP,AC=6,
∴S四边形AECP=S△AEC+S△APC=
AC×EF+
AC×PF
=
AC×(EF+PF)
=
AC×PE
=
×6×(﹣
m2﹣3m)
=﹣m2﹣9m
=﹣(m+
)2+
,
∵﹣6<m<0
∴当m=﹣
时,四边形AECP的面积的最大值是
,此时点P(﹣
,﹣
).
(3)∵y=
x2+2x+1=
(x+3)2﹣2,
∴P(﹣3,﹣2),
∴PF=yF﹣yP=3,CF=xF﹣xC=3,
∴PF=CF,
∴∠PCF=45°
同理可得:∠EAF=45°,
∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的Q,
设Q(t,1)且AB=9
,AC=6,CP=3![]()
∵以C、P、Q为顶点的三角形与△ABC相似,
①当△CPQ∽△ABC时,
∴
,
∴
,
∴t=﹣4,
∴Q(﹣4,1)
②当△CQP∽△ABC时,
∴
,
∴
,
∴t=3,
∴Q(3,1).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(x+3)(2x-1)是多项式__________因式分解的结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:

组号
分组
频数
一
6≤m<7
2
二
7≤m<8
7
三
8≤m<9
a
四
9≤m≤10
2
(1)求a的值.
(2)若用扇形统计图来描述,求分数在8≤m<9内所对应的扇形的圆心角的度数.
(3)将在第一组内的两名选手记为A1,A2,在第四组内的两名选手记为B1,B2, 从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据已知条件写出相应不等式.
(1)-3,-2,-1,0,1都是不等式的解;
(2)不等式的负整数解只有-1,-2,-3;
(3)不等式的解的最大的值是0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)
(参考数据:sin48°≈
,tan48°≈
,sin64°≈
,tan64°≈2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简:
(1)a﹣b﹣
;
(2)(
+
)÷
.
相关试题