【题目】如图,在边长为4的正方形ABCD中,对角线AC,BD相交于点O,点E是AD边上一点,连接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于点F,CP交BD于点G,连接PO,若PO∥BC,则四边形OFPG的面积是 . ![]()
参考答案:
【答案】8﹣4 ![]()
【解析】解:如图所示,过P作PM⊥AO于M,作PN⊥BO于N,延长PO交CD于H,
![]()
∵PO∥BC,BC⊥CD,
∴PH⊥CD,
又∵△CDO是等腰直角三角形,
∴OH=
CD=2=CH,OH平分∠COD,
由折叠可得,CP=CD=4,
∴Rt△PCH中,PH=
=2
,
∴PO=PH﹣OH=2
﹣2,
∵PO平分∠AOB,PM⊥AO,PN⊥BO,
∴PM=PN,
矩形PMON是正方形,
∴正方形PMON的面积=
OP2=
(2
﹣2)2=8﹣4
,
∵∠FPG=∠MON=90°,
∴∠FPM=∠GPN,
在△PMF和△PNG中,
,
∴△PMF≌△PNG(ASA),
∴S△PMF=S△PNG,
∴S四边形OFPG=S正方形PMON,
∴四边形OFPG的面积是8﹣4
,
所以答案是:8﹣4
.
【考点精析】利用等腰直角三角形和勾股定理的概念对题目进行判断即可得到答案,需要熟知等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】
是
的直角三角形,
的中点分别是点
点
,动点
从点
出发,按箭头方向通过
到
;以
的速度运动,设
点从
开始运动的距离为
,
的面积为
试回答以下问题:(1)
点从
出发到
停止,写出
与
的函数关系式并写出
的取值范围.(2)求出
点从
出发后几秒时,

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=
DF;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF.其中正确结论的序号为( )
A.①②④B.①②C.①④D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人在一条直线道路上分别从相距1500米的A,B 两点同时出发,相向而行,当两人相遇后,甲继续向点B前进(甲到达点B时停止运动),乙也立即向B点返回.在整个运动过程中,甲、乙均保持匀速运动.甲、乙两人之间的距离y(米)与乙运动的时间x(秒) 之间的关系如图所示.则甲到B点时,乙距B点的距离是米.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个长方形,然后按图2形状拼成一个正方形.

(1)图2的空白部分的边长是多少?(用含a,b的式子表示).
(2)观察图2,用等式表示出
和
的数量关系.(3)若2a+b=6,且ab=2,求图2的空白正方形的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.

(1)求证:四边形DEFG为菱形;
(2)若CD=8,CF=4,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在网络时代里,每年网络上都会出现很多红极一时的网络流行语,为了解同学们对网络流行语的使用情况,某数学兴趣小组选取了其中的 A:“蓝瘦香菇”,B:“洪荒之力”,C:“老司机”,D:“套路”四个网络流行语在全校3000名学生中进行了抽样调查,要求每位被调查学生只能从中选择一个自己用得最多的网络流行语.根据调查结果,该小组绘制了如下两幅不完整的统计图,根据图中提供的信息,请补全条形统计图并估计该校学生用得最多的网络流行语.

相关试题