【题目】如图,已知直线l1∥l2,直线l3和直线l1,l2分别交于点C和D,点P在直线l3上.
(1)若点P在C,D两点之间运动,∠PAC,∠APB,∠PBD之间的关系是否发生变化?若变化,请说明理由;若不变,请求出它们之间的关系式.
(2)若点P在C,D两点的外侧运动(点P与点C,D不重合),则∠PAC,∠APB,∠PBD之间的关系又如何?
![]()
参考答案:
【答案】(1)∠APB=∠PAC+∠PBD;(2)∠PBD=∠PAC+∠APB.
【解析】
(1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD;
(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等与三角形外角的性质,即可求得:∠PBD=∠PAC+∠APB.
(1)不变.当点P在C,D之间运动时,∠APB=∠PAC+∠PBD.
理由如下:
如图①,
![]()
过点P作PE∥l1,
∵l1∥l2,∴PE∥l2∥l1,
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD.
(2)如图②,
![]()
当点P在C,D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.
理由如下:
∵l1∥l2,
∴∠PEC=∠PBD.
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB;
如图③,
![]()
当点P在C,D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.
理由如下:
∵l1∥l2,
∴∠PED=∠PAC.
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是( )

A.3
B.4
C.
D.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】(探究)如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.
(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度数.
(拓展)如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1 , S2 , S3 , 若S1+S2+S3=10,则S2的值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算下列各题
(1)计算:
;
(2)化简:a(3+a)﹣3(a+2). -
科目: 来源: 题型:
查看答案和解析>>【题目】用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是( )

A. 九(1)班的学生人数为40 B. m的值为10
C. n的值为20 D. 表示“足球”的扇形的圆心角是70°
相关试题