【题目】计算下列各题
(1)计算:
;
(2)化简:a(3+a)﹣3(a+2).
参考答案:
【答案】
(1)解:(﹣2)2+(﹣2011)0﹣
,
=4+1﹣2
,
=5﹣2 ![]()
(2)解:a(3+a)﹣3(a+2),
=3a+a2﹣3a﹣6,
=a2﹣6
【解析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)根据乘法的分配律,去括号,合并同类项即可.
【考点精析】关于本题考查的零指数幂法则和实数的运算,需要了解零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);先算乘方、开方,再算乘除,最后算加减,如果有括号,先算括号里面的,若没有括号,在同一级运算中,要从左到右进行运算才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(探究)如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.
(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度数.
(拓展)如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1 , S2 , S3 , 若S1+S2+S3=10,则S2的值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l1∥l2,直线l3和直线l1,l2分别交于点C和D,点P在直线l3上.
(1)若点P在C,D两点之间运动,∠PAC,∠APB,∠PBD之间的关系是否发生变化?若变化,请说明理由;若不变,请求出它们之间的关系式.
(2)若点P在C,D两点的外侧运动(点P与点C,D不重合),则∠PAC,∠APB,∠PBD之间的关系又如何?

-
科目: 来源: 题型:
查看答案和解析>>【题目】用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是( )

A. 九(1)班的学生人数为40 B. m的值为10
C. n的值为20 D. 表示“足球”的扇形的圆心角是70°
-
科目: 来源: 题型:
查看答案和解析>>【题目】一项工程在招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有以下方案:
方案(1):甲队单独完成这项工程刚好如期完成.
方案(2):乙队单独完成这项工程要比规定的日期多用6天.
方案(3):若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款,请说明理由.
相关试题