【题目】数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成如图所示的条形统计图,这组数据的中位数和众数分别是( )![]()
A.中位数和众数都是8小时
B.中位数是25人,众数是20人
C.中位数是13人,众数是20人
D.中位数是6小时,众数是8小时
参考答案:
【答案】A
【解析】因数据总数为50,故中位数为第25和26个数据的平均数,而条形统计图是按从小到大的顺序排列的,前3组的和为24,前4组的和为44,
故第25和26个数据落在第4组,故中位数是8(小时);
条形统计图中出现频数最大的条形对应第四组,故众数是8(小时);
所以答案是:A.
【考点精析】认真审题,首先需要了解中位数、众数(中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.(a2)3=a6B.(ab)2=ab2C.a2+a2=a4D.aa2=a2
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数
(k>0).(1)当k=
时,求这个二次函数的顶点坐标;(2)求证:关于x的一元次方程
有两个不相等的实数根;(3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且OP=1,直线AP交BC于点Q,求证:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)顾客一次性购买多少件时,该网店从中获利最多?
-
科目: 来源: 题型:
查看答案和解析>>【题目】据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:

(1)小张家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前小张家的电费是增多了还是减少了?增多或减少了多少元?请说明理由.
(2)小张家这个月用电95度,经测算比换表前使用95度电节省了5.9元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为( )

A.50°
B.60°
C.70°
D.80° -
科目: 来源: 题型:
查看答案和解析>>【题目】为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).

(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;
(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.
相关试题