【题目】如图所示,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=
S△ABC;③△DEF是等腰直角三角形;④当∠EDF在△ABC内绕顶点D旋转时D旋转时(点E不与点A、B重合),∠BFE=∠CDF,上述结论始终成立的有( )个.
![]()
A. 1 B. 2 C. 3 D. 4
参考答案:
【答案】D
【解析】
根据ASA可证△BED≌△CFD,可得BE=CF,DE=DF,易证①AE=BF;②S四边形BEDF=
S△ABC;③△DEF是等腰直角三角形;由∠BFE=180-∠DFE-∠DFC,∠CDF=180-∠C-∠DFC, ∠DFE=∠C得∠BFE=∠CDF.
∵ED⊥FD,BD⊥AC,
∴∠BDE+∠BDF=90°,∠BDF+∠FDC=90°,
∴∠BDE=∠FDC,
∵△ABC为等腰直角三角形,BD⊥AC,
∴∠EBD=∠C=45°,BD=CD,
在△BED和△CFD中,
,
∴△BED≌△CFD(ASA),
∴BE=CF,
∴AE=BF,选项①正确;
DE=DF,
∴△DEF为等腰直角三角形,选项③正确;
∴S四边形BEDF=S△BED+S△BDF=S△CFD+S△BDF=S△BDC=
S△ABC,选项②正确.
∵∠BFE=180-∠DFE-∠DFC,∠CDF=180-∠C-∠DFC, ∠DFE=∠C=45,
∴∠BFE=∠CDF,选项④正确;
上述结论中始终成立的有4个.
故选:D
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一个正方体的表面展开图,请回答下列问题:
(1)与面B、C相对的面分别是 ;
(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
则下列说法中错误的是( )
A.甲、乙得分的平均数都是8
B.甲得分的众数是8,乙得分的众数是9
C.甲得分的中位数是9,乙得分的中位数是6
D.甲得分的方差比乙得分的方差小 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )

A.∠B=∠C
B.AD=AE
C.BD=CE
D.BE=CD -
科目: 来源: 题型:
查看答案和解析>>【题目】圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是( )

A.0.324πm2
B.0.288πm2
C.1.08πm2
D.0.72πm2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,图①是边长为1的等边三角形纸板,周长记为C1,沿图①的底边剪去一块边长为
的等边三角形,得到图②,周长记为C2,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的
),得图③④…,图n的周长记为Cn,若n≥3,则Cn-Cn-1=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.
实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)
(1)作∠DAC的平分线AM;
(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF
探究与猜想:若∠BAE=36°,求∠B的度数.

相关试题