【题目】Rt△ABC中,∠ACB=90°,直线l过点C.
(1)当AC=BC时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点 E.△ACD与△CBE是否全等,并说明理由;
(2)当AC=9cm,BC=6cm时,如图2,点B与点F关于直线l对称,连接BF、CF,点M在AC上,点N是CF上一点,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,点M、N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒.
①当△CMN为等腰直角三角形时,求t的值;
②当△MDC与△CEN全等时,求t的值.
![]()
参考答案:
【答案】(1)△ACD与△CBE全等,理由见解析;(2)①当t=
秒或
秒时,△CMN为等腰直角三角形;②当t=
秒或
秒或
秒时,△MDC与△CEN全等.
【解析】
(1)根据垂直的定义得到∠DAC=∠ECB,利用AAS定理证明△ACD≌△CBE;
(2)①分点N沿C→B路径运动和点N沿B→C路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;②分点N沿F→C路径运动,点N沿C→B路径运动,点N沿B→C路径运动,点N沿C→F路径运动四种情况,根据全等三角形的判定定理列式计算.
(1)△ACD与△CBE全等.理由如下:
∵AD⊥直线l,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠DAC=∠ECB,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS);
(2)①由题意得,AM=t,FN=3t,
则CM=8﹣t,
由折叠的性质可知,CF=CB=6,
∴CN=6﹣3t,
点N在BC上时,△CMN为等腰直角三角形,
当点N沿C→B路径运动时,由题意得,9﹣t=3t﹣6,
解得,t=
,
当点N沿B→C路径运动时,由题意得,9﹣t=18﹣3t,
解得,t=
,
综上所述,当t=
秒或
秒时,△CMN为等腰直角三角形;
②由折叠的性质可知,∠BCE=∠FCE,
∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,
∴∠NCE=∠CMD,
∴当CM=CN时,△MDC与△CEN全等,
当点N沿F→C路径运动时,9﹣t=6﹣3t,
解得,t=
(不合题意),
当点N沿C→B路径运动时,9﹣t═3t﹣6,
解得,t=
,
当点N沿B→C路径运动时,由题意得,9﹣t=18﹣3t,
解得,t=
,
当点N沿C→F路径运动时,由题意得,9﹣t=3t﹣18,
解得,t=
,
综上所述,当t=
秒或
秒或
秒时,△MDC与△CEN全等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与
OD的延长线交于点P,PC、AB的延长线交于点F.
(1)求证:PC是⊙O的切线;
(2)若∠ABC=60°,AB=10,求线段CF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,
(1)求证:M是BE的中点.
(2)若CD=1,DE=
,求△ABD的周长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线l:y=
x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=
x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在直角坐标系中,四边形ABCO为正方形,A点的坐标为(a,0),D点的坐标为(0,b),且a,b满足(a﹣3)2+|b﹣
|=0.(1)求A点和D点的坐标;
(2)若∠DAE=
∠OAB,请猜想DE,OD和EB的数量关系,说明理由.(3)若∠OAD=30°,以AD为三角形的一边,坐标轴上是否存在点P,使得△PAD为等腰三角形,若存在,直接写出有多少个点P,并写出P点的坐标,选择一种情况证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数”的证明上.如图为前几个“五边形数”的对应图形,请据此推断,第10个“五边形数”应该为( ),第2018个“五边形数”的奇偶性为( )

A. 145;偶数 B. 145;奇数 C. 176;偶数 D. 176;奇数
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=_____.
相关试题