【题目】完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD
求证:∠EGF=90°
证明:∵HG∥AB(已知)
∴∠1=∠3(__________________________)
又∵HG∥CD(已知)
∴∠2=∠4(_______________________________)
∵AB∥CD(已知)
∴∠BEF+___________=180°(_____________________)
又∵EG平分∠BEF,FG平分∠EFD (已知)
∴∠1=(______)∠BEF,∠2=(______)∠EFD (______________________)
∴∠1+∠2=(________) (∠BEF +∠EFD)=(____________)
∴∠3+∠4=90°(_______________________)即∠EGF=90°
![]()
参考答案:
【答案】 两直线平行,内错角相等 两直线平行,内错角相等 ∠EFD 两直线平行,同旁内角互补
角平分线的定义
90° 等量代换
【解析】试题分析:此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,FG平分∠EFD得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.
试题解析:
:∵HG∥AB(已知)
∴∠1=∠3 (两直线平行、内错角相等)
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+∠EFD=180°(两直线平行、同旁内角互补)
又∵EG平分∠BEF,FG平分∠EFD
∴∠1=
∠BEF,
∠2=
∠EFD,
∴∠1+∠2=
(∠BEF+∠EFD),
∴∠1+∠2=90°
∴∠3+∠4=90° (等量代换),
即∠EGF=90°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各因式分解正确的是( )
A. ﹣x2+(﹣2)2=(x+2)(x﹣2)B. x2+2x﹣1=(x﹣1)2
C. x3﹣4x=x(x+2)(x﹣2)D. (2x﹣1)2=4x2﹣4x+1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,入射角∠ODE与反射角∠ADC相等,则∠DEB的度数是( )

A. 75°36′ B. 75°12′ C. 74°36′ D. 74°12′
-
科目: 来源: 题型:
查看答案和解析>>【题目】因式分解:a2(a﹣4)+(4﹣a)=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线
(a≠0)与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=8,OC=6.(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时,点N从B出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN存在时,求运动多少秒使△MBN的面积最大,最大面积是多少?
(3)在(2)的条件下,△MBN面积最大时,在BC上方的抛物线上是否存在点P,使△BPC的面积是△MBN面积的9倍?若存在,求点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了推进学校均衡发展,计划再购进一批图书,丰富学生的课外阅读.为了解学生对课外阅读的需求情况,学校对学生所喜爱的读物:A.文学,B.艺术,C.科普,D.生活,E.其他,进行了随机抽样调查(规定每名学生只能选其中一类读物),并将调查结果绘制成以下不完整的统计图表.

(1)a= ,b= ,请补全条形统计图;
(2)如果全校有2500名学生,请你估计全校有多少名学生喜爱科普读物;
(3)学校从喜爱科普读物的学生中选拔出2名男生和3名女生,并从中随机抽取2名学生参加科普知识竞赛,请你用树状图或列表法求出恰好抽到一名男生和一名女生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.
相关试题