【题目】小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各题. ![]()
(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是 .
(2)从中取出2张卡片,使这2张卡片数字相除商最小,最小值是 .
(3)从中取出除0以外的4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,(注:每个数字只能用一次,如:23×[1﹣(﹣2)]=8×3=24),请另写出一种符合要求的运算式子 .
参考答案:
【答案】
(1)6
(2)-2
(3)(﹣2)3×[﹣(2+1)]=24
【解析】解:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是6;(2)从中取出2张卡片,使这2张卡片数字相除商最小,最小值是﹣2(3)从中取出除0以外的4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,
(注:每个数字只能用一次,如:23×[1﹣(﹣2)]=8×3=24),请另写出两种符合要求的运算式子(﹣2)3×[﹣(2+1)]=24;
所以答案是:(1)6;(2)﹣2;(3)(﹣2)3×[﹣(2+1)]=24
(1)找出+3与+2,使其乘积最大即可;(2)找出+3与﹣2,使其商最小即可;(3)利用“24点”游戏规则写出两个符合要求的式子即可.
【考点精析】关于本题考查的有理数的四则混合运算,需要了解在没有括号的不同级运算中,先算乘方再算乘除,最后算加减才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.

(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.
(2)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=﹣
.①求点D的坐标及该抛物线的解析式;
②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是3个,请直接写出a的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成:
通过观察可以发现:第4个图形中,火柴棒有____根,第n个图形中,火柴棒有_________________根,若用y表示火柴棒的根数,x表示正方形的个数,则y与x的函数关系式是______________________,y是x的____函数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:2x2﹣2y2=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简:5(x-2y)-4(x-2y)=。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.

(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.
(2)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.
相关试题