【题目】如图,抛物线y=ax2+bx+c经过点A(﹣6,0),B(2,0),C(0,﹣6).![]()
(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:∵抛物线y=ax2+bx+c经过点A(﹣6,0),B(2,0),C(0,﹣6),
∴
,解得
.
∴抛物线的解析式为:y=
x2+2x﹣6
(2)
解:如图,过点P作x轴的垂线,交AC于点N.
![]()
设直线AC的解析式为y=kx+m,由题意,得
,解得
,
∴直线AC的解析式为:y=﹣x﹣6.
设P点坐标为(x,
x2+2x﹣6),则点N的坐标为(x,﹣x﹣6),
∴PN=PE﹣NE=﹣(
x2+2x﹣6)+(﹣x﹣6)=﹣
x2﹣3x.
∵S△PAC=S△PAN+S△PCN,
∴S=
PNOA=
×6(﹣
x2﹣3x)=﹣
(x+3)2+
,
∴当x=﹣3时,S有最大值
,此时点P的坐标为(﹣3,﹣
)
(3)
解:在y轴上是存在点M,能够使得△ADM是直角三角形.理由如下:
∵y=
x2+2x﹣6=
(x+2)2﹣8,
∴顶点D的坐标为(﹣2,﹣8),
∵A(﹣6,0),
∴AD2=(﹣2+6)2+(﹣8﹣0)2=80.
设点M的坐标为(0,t),分三种情况进行讨论:
①当A为直角顶点时,如图3①,
由勾股定理,得AM2+AD2=DM2,
即(0+6)2+(t﹣0)2+80=(0+2)2+(t+8)2,
解得t=3,
所以点M的坐标为(0,3);
②当D为直角顶点时,如图3②,
由勾股定理,得DM2+AD2=AM2,
即(0+2)2+(t+8)2+80=(0+6)2+(t﹣0)2,
解得t=﹣7,
所以点M的坐标为(0,﹣7);
③当M为直角顶点时,如图3③,
由勾股定理,得AM2+DM2=AD2,
即(0+6)2+(t﹣0)2+(0+2)2+(t+8)2=80,
解得t=﹣2或﹣6,
所以点M的坐标为(0,﹣2)或(0,﹣6);
综上可知,在y轴上存在点M,能够使得△ADM是直角三角形,此时点M的坐标为(0,3)或(0,﹣7)或(0,﹣2)或(0,﹣6)
![]()
![]()
![]()
【解析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,
x2+2x﹣6),根据AC的解析式表示出点N的坐标,再根据S△PAC=S△PAN+S△PCN就可以表示出△PAC的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小刚与小亮一起玩一种转盘游戏,图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”,“2”,“3”表示.固定指针,同时转动两个转盘,任其自由停止.

(1)用树状图或者列表法表示所有可能的结果;
(2)求两指针指的数字之和等于4的概率;
(3)若两指针指的数字都是奇数,则小刚获胜;否则,小亮获胜.游戏公平吗?为什么? -
科目: 来源: 题型:
查看答案和解析>>【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.

(1)若AD=3
,BE=4,求EF的长;
(2)求证:CE=
EF;
(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:
(1)其中三面涂色的小正方体有________个,两面涂色的小正方体有______个,各面都没有涂色的小正方体有________个;
(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有_________个,各面都没有涂色的有________个;
(3)如果要得到各面都没有涂色的小正方体125个, 那么应该将此正方体的棱______等分.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0), B(9,0),直线y=kx+b经过B、D两点.
(1)求直线y=kx+b的表达式;
(2)将直线y=kx+b平移,当它与矩形没有公共点时,直接写出b的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.

(1)求线段MN的长度;
(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.
相关试题