【题目】如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D为AC边上的个动点,点D从点A出发,沿边AC向C运动,当运动到点C时停止,设点D运动时间为t秒,点D运动的速度为每秒1个单位长度的.
(1)当t=2时,求CD的长;
(2)求当t为何值时,线段BD最短?
![]()
参考答案:
【答案】(1)8;(2)![]()
【解析】
(1)根据勾股定理即可得到结论;
(2)根据相似三角形的判定和性质定理即可得到结论.
(1)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,
∴AC=
=10,
当t=2时,AD=2,
∴CD=8;
(2)当BD⊥AC时,BD最短,
∵BD⊥AC,
∴∠ADB=∠ABC=90°,
∵∠A=∠A,
∴△ABD∽△ACB,
∴
,即:
,
∴AD=
,
∴t=
,
∴当t为
时,线段BD最短.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如图的方式放置。点A1,A2,A3,……和点C1,C2,C3……分别在直线y=x +1和x轴上,则点A6的坐标是____________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:
甲
10
6
10
6
8
乙
7
9
7
8
9
经过计算,甲进球的平均数为8,方差为3.2.
(1)求乙进球的平均数和方差;
(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E、
F分别在AC和BC上.如图,若AD∶DB=1∶4,则CE∶CF=________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某经销商从市场得知如下信息:
某品牌空调扇
某品牌电风扇
进价(元/台)
700
100
售价(元/台)
900
160
他现有40000元资金可用来一次性购进该品牌空调扇和电风扇共100台,设该经销商购进空调扇
台,空调扇和电风扇全部销售完后获得利润为
元.(1)求
关于
的函数解析式;(2)利用函数性质,说明该经销商如何进货可获利最大?最大利润是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AC、BD相交于点O,过点A作BD的平行线AE交CB的延长线于点E.
(1)求证:BE=BC;
(2)过点C作CF⊥BD于点F,并延长CF交AE于点G,连接OG.若BF=3,CF=6,求四边形BOGE的周长.

相关试题