【题目】甲,乙,丙三人各有邮票若干枚,要求互相赠送.先由甲送给乙,丙,所给的枚数等于乙,丙原来各有的邮票数;然后依同样的游戏规则再由乙送给甲,丙现有的邮票数,最后由丙送给甲,乙现有的邮票数.互相送完后,每人恰好各有64枚.你能知道他们原来各有邮票多少枚吗?说出你的思考过程.
参考答案:
【答案】解:设甲原有邮票x枚,乙原有邮票y枚,丙原有邮票z枚.
甲 | 乙 | 丙 | |
原有 | x | y | z |
第一次送后 | x﹣y﹣z | 2y | 2z |
第二次送后 | 2(x﹣y﹣z) | 2y﹣(x﹣y﹣z)﹣2z | 4z |
第三次送后 | 4(x﹣y﹣z) | 2[2y﹣(x﹣y﹣z)﹣2z] | 4z﹣2(x﹣y﹣z)﹣[2y﹣(x﹣y﹣z)﹣2z] |
根据第三次赠送后列方程组
,
即
,
③﹣②得 2z﹣y=8 ④,
②+①得 y﹣z=24 ⑤,
④+⑤得 z=32,
将z代入⑤得 y=56,
将y、z代入①得 x=104,
答:甲原有邮票104枚,乙原有邮票56枚,丙原有邮票32枚.
【解析】假设甲原有邮票x枚,乙原有邮票y枚,丙原有邮票z枚.根据题目说明列出三次赠送的过程如下表
甲 | 乙 | 丙 | |
原有 | x | y | z |
第一次送后 | x﹣y﹣z | 2y | 2z |
第二次送后 | 2(x﹣y﹣z) | 2y﹣(x﹣y﹣z)﹣2z | 4z |
第三次送后 | 4(x﹣y﹣z) | 2[2y﹣(x﹣y﹣z)﹣2z] | 4z﹣2(x﹣y﹣z)﹣[2y﹣(x﹣y﹣z)﹣2z] |
根据第三次赠送后的结果列出方程组![]()
先化简,最后代入消元法或加减消元法求出方程组的解即可.
【考点精析】通过灵活运用解三元一次方程组,掌握通过“代入”或“加减”消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义一种新运算“”,即mn=(m+2)×3﹣n,例如23=(2+2)×3﹣3=9.根据规定解答下列问题:
(1)求6(﹣3)的值;
(2)通过计算说明6(﹣3)与(﹣3)6的值相等吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明一家利用国庆八天驾车到某景点旅游,小汽车出发前油箱有油35L,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图像回答下列问题:
(1)小汽车行驶______h后加油,中途加油_______L
(2)求加油前油箱余油量Q与行驶时间t的函数关系式
(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速80km/h,要到达目的地,油箱中的油是否够用?请说明理由

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明想知道银河系里恒星大约有多少颗,他可以获取有关数据的方式是( )
A.问卷调查
B.实地考察
C.查阅文献资料
D.实验 -
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,真命题是( )
A. 有两边相等的平行四边形是菱形 B. 有一个角是直角的四边形是矩形
C. 四个角相等的菱形是正方形 D. 两条对角线互相垂直且相等的四边形是正方形
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列统计活动中不适宜用问卷调查的方式收集数据的是( )
A.某停车场中每天停放的蓝色汽车的数量
B.七年级同学家中电视机的数量
C.每天早晨同学们起床的时间
D.各种手机在使用时所产生的辐射 -
科目: 来源: 题型:
查看答案和解析>>【题目】小明在一次作业中计算一个多项式M减去多项式5ab﹣3bc+2ac时,忘了将式子5ab﹣3bc+2ac用括号括起来,计算出结果为2ab﹣5bc+6ac,试求出原题目的正确答案.
相关试题