【题目】如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.![]()
(1)求抛物线的函数解析式;
(2)求△ABC的面积;
(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.
参考答案:
【答案】
(1)解:设此函数的解析式为y=a(x+h)2+k,
∵函数图象顶点为M(﹣2,﹣4),
∴y=a(x+2)2﹣4,
又∵函数图象经过点A(﹣6,0),
∴0=a(﹣6+2)2﹣4
解得a=
,
∴此函数的解析式为y=
(x+2)2﹣4,即y=
x2+x﹣3
(2)解:∵点C是函数y=
x2+x﹣3的图象与y轴的交点,
∴点C的坐标是(0,﹣3),
又当y=0时,有y=
x2+x﹣3=0,
解得x1=﹣6,x2=2,
∴点B的坐标是(2,0),
则S△ABC=
|AB||OC|=
×8×3=12
(3)解:假设存在这样的点,过点P作PE⊥x轴于点E,交AC于点F.
设E(x,0),则P(x,
x2+x﹣3),
![]()
设直线AC的解析式为y=kx+b,
∵直线AC过点A(﹣6,0),C(0,﹣3),
∴
,
解得
,
∴直线AC的解析式为y=﹣
x﹣3,
∴点F的坐标为F(x,﹣
x﹣3),
则|PF|=﹣
x﹣3﹣(
x2+x﹣3)=﹣
x2﹣
x,
∴S△APC=S△APF+S△CPF
=
|PF||AE|+
|PF||OE|
=
|PF||OA|=
(﹣
x2﹣
x)×6=﹣
x2﹣
x=﹣
(x+3)2+
,
∴当x=﹣3时,S△APC有最大值
,
此时点P的坐标是P(﹣3,﹣
)
【解析】(1)根据顶点坐标公式即可求得a、b、c的值,即可解题;(2)易求得点B、C的坐标,即可求得OC的长,即可求得△ABC的面积,即可解题;(3)作PE⊥x轴于点E,交AC于点F,可将△APC的面积转化为△AFP和△CFP的面积之和,而这两个三角形有共同的底PF,这一个底上的高的和又恰好是A、C两点间的距离,因此若设设E(x,0),则可用x来表示△APC的面积,得到关于x的一个二次函数,求得该二次函数最大值,即可解题.
【考点精析】认真审题,首先需要了解二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小).
-
科目: 来源: 题型:
查看答案和解析>>【题目】每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图: 请你根据图中提供的信息完成下列各题:

(1)补全条形统计图;
(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】微信运动和腾讯公益推出了一个爱心公益活动:一天中走路步数达到10000步及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000步及以上,每步可捐0.0002元;若步数在10000步以下,则不能参与捐款.
(1)老赵某天的步数为13000步,则他当日可捐多少钱?
(2)已知甲、乙、丙三人某天通过步数共捐了8.4元,且甲的步数=乙的步数=丙步数的3倍,则丙走了多少步?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.
(1)在图1中,EF= ,BF= ;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的s1,s2,若m-n=2,请问S2-S1的值为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.

(1)求证:四边形ABCD是正方形;
(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.
(3)若EG=4,GF=6,BM=3
,求AG、MN的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小强从A处出发沿北偏东70°方向行走,走至B处,又沿着北偏西30°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )

A. 左转 80° B. 右转80° C. 右转 100° D. 左转 100°
相关试题