【题目】钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.![]()
(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?
(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,
≈1.4,
≈1.7)
参考答案:
【答案】
(1)
解:过点E作圆A的切线EN,连接AN,则AN⊥EN,
由题意得,CE=9×2=18海里,则AE=AC﹣CE=52﹣18=34海里,
∵sin∠AEN=
≈0.35,
∴∠AEN=20.5°,
∴∠NEM=69.5°,
即必须沿北偏东至少转向69.5°航行,才能恰好避免进入钓鱼岛12海里禁区
![]()
(2)
解:过点D作DH⊥AB于点H,
由题意得,BD=2×12=24海里,
在Rt△DBH中,DH=
BD=12海里,BH=12
海里,
∵AF=12海里,
∴DH=AF,
∴DF⊥AF,
此时海监船以最大航速行驶,
海监船到达点F的时间为:
=
=
≈2.2小时;
渔船到达点F的时间为:
=
≈2.4小时,
∵2.2<2.4,
∴海监船比日本渔船先到达F处.
【解析】(1)过点E作圆A的切线EN,求出∠AEN的度数即可得出答案;(2)分别求出渔船、海监船到达点F的时间,然后比较可作出判断.
【考点精析】解答此题的关键在于理解关于方向角问题的相关知识,掌握指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线a∥b,那么∠α的度数是________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l分别与x轴、y轴交于A,B两点,与双曲线y=
(a≠0,x>0)分别交于D、E两点.
(1)若点D的坐标为(4,1),点E的坐标为(1,4):
①分别求出直线l与双曲线的解析式;
②若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?
(2)假设点A的坐标为(a,0),点B的坐标为(0,b),点D为线段AB的n等分点,请直接写出b的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三角形ABC中,AC=4 cm,BC=3 cm,将三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8 cm,DB=2 cm.
(1)求三角形ABC向右平移的距离AD的长;
(2)求四边形AEFC的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】横坐标和纵坐标都是整数的点叫作整点,函数y=
的图象上的整点的个数是( )A. 3个 B. 4个 C. 6个 D. 8个
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.

(1)如图1,当点M与点C重合,求证:DF=MN;
(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以
cm/s速度沿AC向点C运动,运动时间为t(t>0);
①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.
②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).

(1)求抛物线的解析式;
(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.
相关试题