【题目】如图所示,在矩形ABCD中,AB=20cm,BC=4cm,点P从点A开始沿折线ABCD以4cm/s的速度运动,点Q从点C开始沿CD边以1cm/s的速度运动,如果点P,Q分别从点A,C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为ts,则t为何值时,四边形APQD是矩形?
![]()
参考答案:
【答案】当t=4时,四边形APQD是矩形.
【解析】
四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可.
解:观察图形,当AP=DQ时,由AP∥DQ,∠A=90°,可得四边形APQD是矩形.
∵AP∥DQ,∠A=90°,∴当AP=DQ时,四边形APQD是矩形.
依题意有4t=20-t,∴t=4,
故当t=4时,四边形APQD是矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F

(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在四边形ABCD中,AB=CD,BC=AD,E、F是对角线AC上两点,且AE=CF.求证:BE=DF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
ABCD,四个内角平分线相交于E、F、G、H。求证:四边形EFGH是矩形。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,要把残破的轮片复制完整,已知弧上的三点A、B、C.
①用尺规作图法找出
所在圆的圆心(保留作图痕迹,不写作法);②设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.
(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.
(3)在(2)的条件下,求线段DE的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )

A.4,30° B.2,60° C.1,30° D.3,60°
相关试题