【题目】如图,P为反比例函数y=
(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是( )![]()
A.2
B.4
C.6
D.8
参考答案:
【答案】D
【解析】解:方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n,
),
![]()
∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,
∴C(0,﹣4),G(﹣4,0),
∴OC=OG,
∴∠OGC=∠OCG=45°
∵PB∥OG,PA∥OC,
∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,
∴PA=PB,
∵P点坐标(n,
),
∴OD=CQ=n,
∴AD=AQ+DQ=n+4;
∵当x=0时,y=﹣x﹣4=﹣4,
∴OC=DQ=4,GE=OE=
OC=
;
同理可证:BG=
BF=
PD=
,
∴BE=BG+EG=
+
;
∵∠AOB=135°,
∴∠OBE+∠OAE=45°,
∵∠DAO+∠OAE=45°,
∴∠DAO=∠OBE,
∵在△BOE和△AOD中,
,
∴△BOE∽△AOD;
∴
=
,即
=
;
整理得:nk+2n2=8n+2n2,化简得:k=8;
所以答案是:D.
方法2、如图1, ![]()
过B作BF⊥x轴于F,过点A作AD⊥y轴于D,
∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,
∴C(0,﹣4),G(﹣4,0),
∴OC=OG,
∴∠OGC=∠OCG=45°
∵PB∥OG,PA∥OC,
∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,
∴PA=PB,
∵P点坐标(n,
),
∴A(n,﹣n﹣4),B(﹣4﹣
,
)
∴AD=AQ+DQ=n+4;
∵当x=0时,y=﹣x﹣4=﹣4,
∴OC=4,
当y=0时,x=﹣4.
∴OG=4,
∵∠AOB=135°,
∴∠BOG+∠AOC=45°,
∵直线AB的解析式为y=﹣x﹣4,
∴∠AGO=∠OCG=45°,
∴∠BGO=∠OCA,∠BOG+∠OBG=45°,
∴∠OBG=∠AOC,
∴△BOG∽△OAC,
∴
=
,
∴
=
,
在等腰Rt△BFG中,BG=
BF=
,
在等腰Rt△ACD中,AC=
AD=
n,
∴
,
∴k=8,
所以答案是:D.
【考点精析】通过灵活运用反比例函数的图象和相似三角形的判定,掌握反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.
(1)求∠MON的度数;
(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;
(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).

-
科目: 来源: 题型:
查看答案和解析>>【题目】先阅读下面的内容,再解决问题.
例题:若m2+2mn+2n26n+9=0,求m和n的值.
解:∵m2+2mn+2n26n+9=0即:
∴m2+2mn+n2+n26n+9=0
∴

∴即:m+n=0,n-3=0
∴m=3,n=3
(1)若
,求
的值.(2)若三角形三边a,b,C都是正整数,且满足
,判断三角形的形状. -
科目: 来源: 题型:
查看答案和解析>>【题目】把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.
(1)若∠BAC=40°,求∠AEB的度数;
(2)求证:∠AEB=∠ACF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算题:
(1)计算:(
﹣1)0﹣(﹣
)﹣2+
tan30°;
(2)解方程:
+
=1.
相关试题