【题目】(8分)如图,△AOB、△COD是等腰直角三角形,点D在AB上.
![]()
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD和△ABC的面积.
参考答案:
【答案】(1)详见解析;(2)
.
【解析】
试题分析:(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;(2)由(1)可知△AOC≌△BOD,所以AC=BD=1,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,根据勾股定理即可求出CD的长.
试题解析:( 1)证明:∵∠DOB=90°-∠AOD,∠AOC=90°-∠AOD,
∴∠DOB=∠AOC,
又∵OC=OD,OA=OB,
在△AOC和△BOD中,
,
∴△AOC≌△BOD(SAS);
(2)解:∵△AOC≌△BOD,
∴AC=BD=1,∠CAO=∠DBO=45°,
∴∠CAB=∠CAO+∠BAO=90°,
∴CD=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点△
关于直线DE对称的△
;(2)作出△
绕点
顺时针方向旋转
后的△
;(3)△
的周长为_____;(保留根号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△DAC,△EBC均是等边三角形,点A,C,B在同一条直线上,AE,BD分别与CD,CE交于点M,N,下列结论:①△ACE≌△DCB; ②CM=CN;③AC=DN ;④∠DAE=∠DBC.其中正确的结论有________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,(1)作△ABC的外接⊙O(用尺规作图,保留作图痕迹,不写作法);
(2)若AB=6cm,AC=BC=5cm,求⊙O的半径.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①,在边长为1个单位长度的小正方形组成的网络中,给出了格点△ABC(顶点是网络线的交点)和点A1.画出一个格点A1B1C1,使它与△ABC全等且A与A1是对应点;
(2)如图②,已知△ABC 的三个顶点的坐标分别为A(-3,-3),B(-2,-1)C(-1,-2).
①画出△ABC关于x轴对称的图形;
②点B关于y轴对称的点的坐标为

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,求图中实线所围成的图形的面积S.

-
科目: 来源: 题型:
查看答案和解析>>【题目】镇江某特产专卖店销售某种特产,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克,经过市场调查发现,单价每降低3元,平均每天的销售量可增加30千克,专卖店销售这种特产若想要平均每天获利2240元,且销售尽可能大,则每千克特产应定价为多少元?
(1)解:方法1:设每千克特产应降价x元,由题意,得方程为:_____;
方法2:设每千克特产降低后定价为x元,由题意,得方程为:_____.
(2)请你选择一种方法,写出完整的解答过程.
相关试题