【题目】将一块含有45°的三角板ABC的顶点A放在⊙O上,且AC与⊙O相切于点A(如图1),将△ABC从点A开始,绕着点A顺时针旋转,设旋转角为α(0°<α<135°),旋转后,AC、AB分别与⊙O交于点E,F,连接EF(如图2).已知AC=8,⊙O的半径为4.
(1)在旋转过程中,有以下几个量:①弦EF的长;②
的长;③∠AFE的度数;④点O到EF的距离.其中不变的量是___________________(填序号);
(2)当α=________°时,BC与⊙O相切(直接写出答案);
(3)当BC与⊙O相切时,求△AEF的面积.
![]()
![]()
参考答案:
【答案】(1)①②④;(2)90°;(3)16
【解析】
试题分析:(1)连接EO,FO,可知三角形EOF为等腰直角三角形,作OD垂直EF于D,由垂径定理,勾股定理可得出结论;(2)因为AC=8,而⊙O的半径为4.所以当BC与⊙O相切时,△ACB绕点A旋转90°后AC恰为⊙O直径,即旋转角α为90度时BC与⊙O相切;(3)当BC与⊙O相切时,如图:点C与点E重合,AC为⊙O直径,利用三角形AEF是等腰直角三角形得出结果.
试题解析:(1)连接EO,FO,因为∠A=45,所以∠EOF=2∠A=90,因为EO=FO,所以三角形EOF为等腰直角三角形,作OD垂直EF于D,由垂径定理得:OD垂直平分EF,三角形ODE和三角形ODF是两个全等的等腰直角三角形,所以EF=
OF,OD=
OF,而半径OF是一定的,所以弦EF的长不变,点O到EF的距离即OD不变,故①④正确,又因为半径不变,圆心角∠EOF=90不变,所以
的长不变,故②正确,而∠AFE的度数等于弧AE度数的一半,A点不变,E是旋转中AC与⊙O交点,可变,故弧AE度数可变,所以∠AFE的度数可变,故③错误,所以不变的序号应是①②④;(2)因为圆的切线垂直于过切点的半径,而∠ACB=90当BC与⊙O相切时,因为AC=8,而⊙O的半径为4.所以△ACB绕点A旋转90°后AC恰为⊙O直径,即旋转角α为90度时BC与⊙O相切;(3)如图,
![]()
当BC与⊙O相切时,依题意可知,△ACB旋转90°后AC为⊙O直径,且点C与点E重合,∵AC为⊙O直径,∴∠AFE=90°.又∵∠BAC=45°,∴∠FCA=45°.∴∠BAC=∠FCA,∴AF=EF.∵AC=8,∴AF=EF=4
,∴S△AEF=
×(4
)2=16.故△AEF的面积是16..
-
科目: 来源: 题型:
查看答案和解析>>【题目】青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为_________________平方千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.
(1)求证:AC·CD=CP·BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有两个一元二次方程:M:
N:
,其中
,以下列四个结论中,错误的是( )A、如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
B、如果方程M有两根符号相同,那么方程N的两根符号也相同;
C、如果5是方程M的一个根,那么
是方程N的一个根;D、如果方程M和方程N有一个相同的根,那么这个根必是

-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程:
(1)2(x+1)2=8;
(2)x2+2x+1=8(配方法);
(3)2x2﹣3x﹣1=0 (公式法);
(4)64(3y﹣2)2=9(2y﹣3)2
(5)(x﹣1)2﹣4(x﹣1)+4=0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下面三行数:
2,﹣4,8,﹣16,32,﹣64,…; ①
4,﹣2,10,﹣14,34,﹣62,…;②
1,﹣2,4,﹣8,16,﹣32,….③
(1)第①行第8个数为;第②行第8个数为;第③行第8个数为;
(2)第③行中是否存在连续的三个数,使得三个数的和为768?若存在,则求出这三数;不存在,则说明理由.
相关试题