【题目】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处,若AB=6cm,AC=10cm,则四边形AECF的面积为cm2.![]()
参考答案:
【答案】30
【解析】解:在矩形ABCD中,AB=6,AC=10,∴BC=
8cm.
由折叠的性质可得AM=AB=6,EM=BE,∠AME=∠B=90°,则CM=10-6=4cm.
设EM=BE=x,则CE=8-x,
由勾股定理得 ![]()
得
,解得x=3,即EM=3.
同理可得FN⊥AC,EF=3,
则四边形AECF的面积为
=30cm2.
所以答案是30.
【考点精析】掌握翻折变换(折叠问题)是解答本题的根本,需要知道折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABN中,∠B =90°,点M是AB上的动点(不与A,B两点重合),点C是BN延长线上的动点(不与点N重合),且AM=BC,CN=BM,连接CM与AN交于点P.
(1)在图1中依题意补全图形;


(2)小伟通过观察、实验,提出猜想:在点M,N运动的过程中,始终有∠APM=45°.小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:
要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM=45°.
他们的一种作法是:过点M在AB下方作MD
AB于点M,并且使MD=CN.通过证明△AMD
△CBM,得到AD=CM,再连接DN,证明四边形CMDN是平行四边形,得到DN=CM,进而证明△ADN是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN是平行四边形,推得∠APM=45°.使问题得以解决.请你参考上面同学的思路,用另一种方法证明∠APM=45°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于二次函数y=-x2+2x,有下列四个结论:①它的对称轴是直线x=1;②设y1=-
+2x1,y2=-
+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确结论的个数为( )A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】探究归纳题:

(1)试验分析:
如图1,经过A点与B、C两点分别作直线,可以作____________条;同样,经过B点与A、C两点分别作直线,可以作______________条;经过C点与A、B两点分别作直线,可以作___________条.
通过以上分析和总结,图1共有___________条直线.
(2)拓展延伸:
运用(1)的分析方法,可得:
图2共有_____________条直线;
图3共有_____________条直线;
(3)探索归纳:
如果平面上有n(n≥3)个点,且每3个点均不在同一直线上,经过其中两点共有________条直线.(用含n的式子表示)
(4)解决问题:
中职篮(CBA)2017——2018赛季作出重大改革,比赛队伍数扩充为20支,截止2017年12月21日赛程过半,即每两队之间都赛了一场,请你帮助计算一下一共进行了多少场比赛?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某景区在“五一”小长假期间,每天接待的旅客人数统计如下表.
日期
5月1日
5月2日
5月3日
5月4日
5月5日
人数(万人)
1.2
2
2.5
2
1.1
表中表示人数的一组数据中,众数和中位数分别为( )
A.2.5万,2万B.2.5万,2.5万C.2万,2.5万D.2万,2万
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A1,A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1,A3B2∥A2B1,A3B3∥A2B2,A4B3∥A3B2,…. 若
和
的面积分别为1、9,则
的面积是_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】0.25°等于( )分.
A.60
B.15
C.90
D.360
相关试题