【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上. ![]()
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.
参考答案:
【答案】
(1)解:因为二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),所以
,
解得
.
所以一次函数解析式为y=x2+2x﹣3.
(2)解:∵抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3),
∴C、D关于x轴对称,连接AC与对称轴的交点就是点P,
此时PA+PD=PA+PC=AC=
=
=3
.
(3)解:设点P坐标(m,m2+2m﹣3),
令y=0,x2+2x﹣3=0,
x=﹣3或1,
∴点B坐标(1,0),
∴AB=4
∵S△PAB=6,
∴
4|m2+2m﹣3|=6,
∴m2+2m﹣6=0,m2+2m=0,
∴m=0或﹣2或1+
或1﹣
.
∴点P坐标为(0,﹣3)或(﹣2,﹣3)或(1+
,3)或(1﹣
,3).
【解析】(1)把A、D两点坐标代入二次函数y=x2+bx+c,解方程组即可解决.(2)利用轴对称找到点P,用勾股定理即可解决.(3)根据三角形面积公式,列出方程即可解决.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C处,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,C是⊙O上一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且AC平分∠BAD.

(1)求证:直线MN是⊙O的切线;
(2)若CD=4,AC=5,求⊙O的直径. -
科目: 来源: 题型:
查看答案和解析>>【题目】在﹣
,0,﹣2,
,1中,绝对值最大的数为( )
A.0
B.﹣
C.﹣2
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+
与反比例函数y=
在同一坐标系内的大致图象是( ) 
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣x+5与双曲线y=
(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是
.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=
(x>0)的交点有( ) 
A.0个
B.1个
C.2个
D.0个,或1个,或2个
相关试题