【题目】如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.
(1)求证:直线CA是⊙O的切线;
(2)若BD=
DC,求
的值.
![]()
参考答案:
【答案】(1)证明见解析;(2)
.
【解析】试题分析:(1)若要证明直线CA是⊙O的切线,则只要证明∠ACB=90°即可;
(2)易证△ADF∽△ACE,由相似三角形的性质以及结合已知条件即可求出
的值.
试题解析:解:(1)证明:∵BC为直径,∴∠BDC=∠ADC=90°,∴∠1+∠3=90°
∵AE平分∠BAC,CE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°,∵∠3=∠4,∴∠2+∠5=90°,∴∠ACB=90°,即AC⊥BC,∴直线CA是⊙O的切线;
(2)由(1)可知,∠1=∠2,∠3=∠5,∴△ADF∽△ACE,∴
,∵BD=
DC,∴tan∠ABC=
=
,∵∠ABC+∠BAC=90°,∠ACD+∠BAC=90°,∴∠ABC=∠ACD,∴tan∠ACD=
,∴sin∠ACD=
,∴
=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学七(2)班学生去劳动实践基地开展实践劳动,在劳动前需要分成x组,若每组11人,则余下一人,若每组12人,则有一组少4人,若每组分配7人,则该班可分成_____组.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一家商店将某种微波炉按原价提高20%后标价,又以9折优惠卖岀,结果每台微波炉比原价多赚了80元,这种微彼炉原价是_____元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).
(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?
(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.
(1)该商场购进甲、乙两种商品各多少件?
(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】种植草莓大户张华现有22吨草莓等待出售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,受客观因素影响,张华每天只能采用一种销售渠道,而且草莓必须在10天内售出(含10天)经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见右表:

(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x(吨)之间的函数关系式;
(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.
相关试题