【题目】某工地因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:
租金(单位:元/台时) | 挖掘土石方量(单位:m3/台时) | |
甲型机 | 100 | 60 |
乙型机 | 120 | 80 |
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案.
参考答案:
【答案】(1)甲、乙两种型号的挖掘机各需5台、3台;(2)有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机
【解析】
(1)设甲、乙两种型号的挖掘机各需x台、y台,根据题意建立二元一次方程组即可求解;
(2)设租用m辆甲型挖掘机,n辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解,然后分别计算支付租金,选择符合要求的租金方案.
(1)设甲、乙两种型号的挖掘机各需x台、y台.
依题意得:
,
解得:
.
答:甲、乙两种型号的挖掘机各需5台、3台;
(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.
依题意得:60m+80n=540,化简得:3m+4n=27.
∴m=9﹣
n
取正整数解有:
或
.
当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;
当m=1,n=6时,支付租金:100×1+120×6=820元<850元,符合要求.
答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
与x轴和 y 轴分别交与A,B 两点,另一直线经过点B和点C(6,-5).(1)求 A,B 两点的坐标;
(2)证明:△ABC 是直角三角形;
(3)在 x 轴上找一点 P,使△BCP 是以 BC 为底边的等腰三角形,求出 P 点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1+∠2﹦180°,∠3﹦∠B,则DE∥BC,下面是王华同学的推导过程﹐请你帮他在括号内填上推导依据或内容.

证明:
∵∠1+∠2﹦180(已知),
∠1﹦∠4 (_________________),
∴∠2﹢_____﹦180°.
∴EH∥AB(___________________________________).
∴∠B﹦∠EHC(________________________________).
∵∠3﹦∠B(已知)
∴ ∠3﹦∠EHC(____________________).
∴ DE∥BC(__________________________________).
-
科目: 来源: 题型:
查看答案和解析>>【题目】为践行“绿水青山就是金山银山”的理念,坚持绿色发展,建设美丽家园,青年大学生小王准备在家乡边疆种植两种树木.经研究发现,A种树木种植费用y(元)与 种植面积 x(m2)的函数表达式如图所示,B种树木的种植费用为400元/ m2.
(1)求y与x的函数表达式;
(2)A种树木和 B 种树木种植面积共 1500 m,若A种树木种植面积不超过B种树木种 植面积的2倍,且 A 种树木种植面积不少于 400 m,应该如何分配A种树木和B种树木的种植面积才能使得总费用最少?最少费用是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O 为坐标原点,长方形 OABC,点 B 的坐标为(3,8),点 A、C 分别在坐标轴上,D 为 OC 的中点.
(1)在 x 轴上找一点 P,使得 PD+PB 最小,则点 P 的坐标为 ;
(2)在 x 轴上找一点 Q,使得|QD-QB|最大,求出点 Q 的坐标并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,AD=BC,点F是AB的中点,点E是BC边上的点,DE=AD+BE,△DEF 的周长为l.
(1)求证:DF 平分∠ADE;
(2)若 FD=FC,AB=2,AD=3,求l的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】操作探究:已知在纸面上有一数轴(如图所示),

(1)折叠纸面,使表示的点1与-1重合,则-2表示的点与 表示的点重合;
(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:
① 5表示的点与数 表示的点重合;
②
表示的点与数 表示的点重合;③若数轴上A、B两点之间距离为9(A在B的左侧),且A、B两点经折叠后重合,此时点A表示的数是 、点B表示的数是 .
(3)已知在数轴上点A表示的数是a,点A移动4个单位,此时点A表示的数和a是互为相反数,求a的值。
相关试题