【题目】如图,点P是正方形ABCD的对角线BD上的一点,连接PA,PC.
(1)证明:∠PAB=∠PCB;
(2)在BC上截取一点E,连接PE,使得PE=PC,连接AE,判断△PAE的形状,并说明理由.
![]()
参考答案:
【答案】(1)证明见解析;(2)△PAE是等腰直角三角形. 理由见解析.
【解析】(1)根据正方形的性质得AB=CB,∠ABD=∠CBD,又知BP=BP,即可证△ABP≌△CBP,于是得到PA=PC,∠PAB=∠PCB;(2)根据PE=PC得到∠PEC=∠PCB,进而求出∠PAB=∠PEC,由E是BC上一点,∠PEB+∠PEC=180°求得∠PAB+∠PEB=180°,进而求出∠APE=90°,再根据PA=PC,PE=PC,求出PA=PE,于是证得△PAE是等腰直角三角形.
解:(1)∵四边形ABCD是正方形,
∴BA=BC,∠ABP=∠CBP ,
又∵BP=BP,
∴△ABP≌△CBP,
∴∠PAB=∠PCB,
(2)△PAE是等腰直角三角形. 理由如下:
∵PE=PC,
∴∠PEC=∠PCB,
由(1)∠PAB=∠PCB,
∴∠PAB=∠PEC ,
∵∠PEC+∠PEB=180°,
∴∠PAB+∠PEB=18,
∵∠PAB+∠ABE+∠PEB+∠APE=360°,
∠ABE=90°,
∴∠APE=90°,
由(1)△ABP≌△CBP得PA=PC,
∵PE=PC,
∴PA= PE,
∴△PAE是等腰直角三角形.
“点睛”本题主要考查正方形的性质和全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握正方形的性质和全等三角形的判定定理,此题难度不大.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个三角形的两个内角分别为60°和20°,则这个三角形是( )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.不能确定 -
科目: 来源: 题型:
查看答案和解析>>【题目】下列调查中,适合采用普查的是()
A.了解一批电视机的使用寿命
B.了解全省学生的家庭1周内丢弃塑料袋的数量
C.了解某校八(2)班学生的身高
D.了解淮安市中学生的近视率
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D是Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于点E,若AE=5cm,DC=12 cm,则CE的长为_____________ cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】把抛物线y=﹣(x﹣2)2﹣2先向左平移1个单位,再向下平移1个单位,得到的抛物线的解析式为_____
-
科目: 来源: 题型:
查看答案和解析>>【题目】对单项式“0.5a”可以解释为:一件商品原价为a元,若按原价的5折出售,这件商品现在的售价是0.5a元,请你对“0.5a”再赋予一个含义:_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.

根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;
(2)请将条形统计图补充完整;
(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
相关试题