【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
![]()
(1)当直线MN绕点C旋转到图甲的位置时,试说明:①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图乙的位置时,试说明:DE=AD-BE;
(3)当直线MN绕点C旋转到图丙的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
参考答案:
【答案】(1)证明见解析;()证明见解析;(3)AD、DE、BE所满足的等量关系是DE=BE-AD(或AD=BE-DE,BE=AD+DE等)理由见解析.
【解析】试题分析:(1)由∠ACB=90°,得∠BCE+∠ACD=90°,而AD⊥MN于D,BE⊥MN于E.则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE.,易得
Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.
(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE-CD=AD-BE.
(3)DE、AD、BE具有的等量关系为:DE=BE-AD.证明的方法与(2)相同.
试题解析:(1)①∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE.
在△ADC和△CEB中, ![]()
∴△ADC≌△CEB(AAS).
②∵△ADC≌△CEB,
∴CE=AD,CD=BE,
∴DE=CE+CD=AD+BE;
(2)∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE.又∵AC=BC,
∴△ADC≌△CEB(AAS),
∴CD=BE.AD=CE,
∴DE=CE-CD=AD-BE;
(3)当MN旋转到图丙的位置时,AD、DE、BE所满足的等量关系是DE=BE-AD(或AD=BE-DE,BE=AD+DE等).
∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE.
∵AC=BC,
∴△ACD≌△CBE(AAS),
∴AD=CE,CD=BE,
∴DE=CD-CE=BE-AD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点A(-3,0)在___轴上,点B(-2,-3)在第___象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知B、E分别是线段AC、DF的中点,AC=DF,BF交CD于点H,AE交CD于点G,CH=HG=DG,BH=GE.
(1)填空:因为B、E分别是线段AC、DF的中点,所以CB=________AC,DE=________DF.因为AC=DF,所以CB=________.在△CBH和△DEG中,因为CB=________,CH=________,BH=________EG,所以________≌________(SSS).
(2)除了(1)中的全等三角形外,请你再写出另外一对全等三角形,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】武汉市今年元月某天的最高气温是8℃,最低气温是﹣2℃,则这一天的温差是( )
A.8℃
B.﹣6℃
C.6℃
D.10℃ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(
,0)、(0,4),抛物线
经过B点,且顶点在直线
上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】 已知∠A=39°15′,则∠A的余角的度数为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】B于E,交CD于F,连接DE、BF

(1)求证:四边形DEBF是平行四边形;
(2)当EF与BD满足条件时,四边形DEBF是菱形.
相关试题