【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成绩 | 中位数 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空①;②;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为
,你认为推荐谁参加比赛更合适,请说明理由.
参考答案:
【答案】
(1)9;9
(2)解:S甲2=
[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]= ![]()
(3)解:∵
=
,S甲2<S乙2 ,
∴推荐甲参加比赛合适.
【解析】解:(1)甲的中位数是:
=9;
乙的平均数是:(10+7+10+10+9+8)÷6=9;
答案为:9,9
(1)利用算数平均数定义和中位数定义,可填出结果;(2)利用方差公式可求出甲的方差,(3)运用方差的意义,二人的平均数一样,看谁成绩稳定,方差小,波动小,稳定,可选甲.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数y=(2m-3)x+m+2.
(1)若函数图像过原点,求m的值;
(2)若函数图像过点(-1,0),求m的值;
(3)若函数图像平行于直线y=-x+2求m的值;
(4)若函数图像经过第一、二、四象限,求m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.

(1)请用两种不同的方法,求图b中阴影部分的面积:
方法1: ; 方法2: ;
(2)观察图b,写出代数式
,
,
之间的等量关系,并通过计算验证;(3)根据(2)题中的等量关系,解决如下问题:若
,
,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=x+4交y轴于点A,与直线BC相交于点B(-2,m),直线BC与y轴交于点C(0,-2),与x轴交于点D.

(1)求点B坐标;
(2)求△ABC的面积
(3)过点A作BC的平行线交x轴于点E,求点E的坐标;
(4)在(3)的条件下,点p是直线AB上一动点且在x轴上方,Q为直角坐标平面内一点,如果以点D、E、P、Q为顶点的平行四边形的面积等于△ABC面积请求出点P的坐标.并直接写出点Q的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )

A.AB=DC,AD=BCB.AB∥DC,AD∥BC
C.AB∥DC,AD=BCD.OA=OC,OB=OD
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD//AB,BD平分∠ABC,CE平分∠DCF,∠ACE=90°
(1)请问BD和CE是否平行?请你说明理由;
(2)AC和BD有何位置关系?请你说明判断的理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.
(1)A、B型车每辆可分别载学生多少人?
(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.
相关试题