【题目】已知△ABC中,∠BCA=90°,BC=AC,D是BA边上一点(点D不与A,B重合),M是CA中点,当以CD为直径的⊙O与BA边交于点N,⊙O与射线NM交于点E,连接CE,DE. ![]()
(1)求证:BN=AN;
(2)猜想线段CD与DE的数量关系,并说明理由.
参考答案:
【答案】
(1)证明:∵CD为⊙O的直径,
∴∠CND=90°,
∴CN⊥AB,
∵BC=AC,
∴BN=AN;
(2)解:CD=
DE,
理由如下:∵△ABC中,∠BCA=90°,BN=AN,
∴CN=AN,
∵点M是CA中点,
∴NM平分∠CNA,
∵∠CNA=90°,
∴∠CNM=45°,
∴∠CDE=∠CNE=45°,
∵CD为⊙O的直径,
∴∠CED=90°,
∴∠DCE=45°=∠CDE,
∴DE=CE,
∵CE2+DE2=CD2,
∴CD=
DE
【解析】(1)根据圆周角定理求出∠CND=90°,根据等腰三角形的性质得出即可;(2)根据直角三角形斜边上中线性质求出CN=AN,根据等腰三角形性质求出∠CNM=45°,根据圆周角定理求出∠CED=90°,∠CDE=∠CNE=45°,根据勾股定理求出即可.
【考点精析】本题主要考查了等腰三角形的性质和直角三角形斜边上的中线的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);直角三角形斜边上的中线等于斜边的一半才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线MN交⊙O于A,B两点,AC是⊙O的直径,DE与⊙O相切于点D,且DE⊥MN于点E. 求证:AD平分∠CAM.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD//BC,AC=8,BD=6.
(1)求证:四边形ABCD是平行四边形;
(2)若AC⊥BD,求□ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠B=60°,点P为BC边上一点,设BP=x,AP2=y(如图1),已知y是x的二次函数的一部分,其图象如图2所示,点Q(2,12)是图象上的最低点.

(1)边AB= , BC边上的高AH=;
(2)当△ABP为直角三角形时,BP的长是多少. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,已知AD>AB.
(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)
(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数y=mx2+(2m+1)x+2(m为实数).

(1)请探究该函数图象与x轴的公共点个数的情况(要求说明理由);
(2)在图中给出的平面直角坐标系中分别画出m=﹣1和m=1的函数图象,并根据图象直接写出它们的交点坐标;
(3)探究:对任意实数m,函数的图象是否一定过(2)中的点,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2
,
,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q. 
(1)求证:△APP′是等腰直角三角形;
(2)求∠BPQ的大小.
相关试题