【题目】已知关于x的方程kx2+4x-2=0有实数根,求k的取值范围.


参考答案:

【答案】K的取值范围为k≥-2.

【解析】试题分析:根据题意,分两种情况可知:

当k=0时,直接判断一元一次方程的解的可能即可;

当k≠0时,根据一元二次方程根的判别式判断根的情况即可.

试题解析:当k=0时,方程变为一元一次方程4x-2=0,此时方程有实数根,

K≠0时,

∵关于x的方程kx2+4x-2=0有实数根,

∴△=b2-4ac≥0

即:16+8k≥0

解得:k≥-2

K的取值范围为k≥-2.

关闭