【题目】从下列算式:①
;②26÷23=4;③ -12018=1;④ (-
)2=3;⑤a+a=a2中随机抽取一个,运算结果正确的概率是( )
A.
B.
C.
D. ![]()
参考答案:
【答案】A
【解析】
根据二次根式、整数指数幂以及随机事件的概率的定义进行求解即可.
①由算术平方根的概念得,
=3,故①项错误;
②由“同底数幂相除, 底数不变, 指数相减”得, 26÷23=26-3=23=8,故②项错误;
③由整数指数幂的性质得: -12018=-1, 故③项错误;
④由整数指数幂的性质得, (-
)2=3,故④项正确;
⑤合并同类项得, a+a=2a,故⑤项错误,
综上所述,5个运算结果中正确的共有1个,
故运算结果正确的概率P=
,
故本题正确答案为A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a+b=1,ab=﹣1,设S1=a+b,S2=a2+b2,S3=a3+b3,…,Sn=an+bn
(1)计算S2.
(2)请阅读下面计算S3的过程:

∵a+b=1,ab=﹣1
∴S3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×S2﹣(﹣1)=S2+1= .
你读懂了吗?请你先填空完成(2)中S3的计算结果,再用你学到的方法计算S4
(3)试写出Sn﹣2,Sn﹣1,Sn三者之间的数量关系式(不要求证明,且n是不小于2的自然数),根据得出的数量关系计算S7.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC

(1)求证:DE与⊙O相切;
(2)若BF=2,DF=
,求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.
(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1 上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=12,点F是AB的中点,过点F作FD⊥AB交AC于点D.
(1)若△AFD以每秒2个单位长度的速度沿射线FB向右移动,得到△A1F1D1,当F1与点B重合时停止移动.设移动时间为t秒,△A1F1D1与△CBF重叠部分的面积记为S.直接写出S与t的函数关系式.
(2)在(1)的基础上,如果D1,B,F构成的△D1BF为等腰三角形,求出t值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(
,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④
;其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于原点O成中心对称的△A1B1C1,并写出A1的坐标;
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并求出点C在旋转过程中经过的路径长是多少?

相关试题