【题目】某校随机抽取部分学生,对“学习习惯”进行问卷调查.
设计的问题:对自己做错的题目进行整理、分析、改正;
答案选项为:A:很少,B:有时,C:常常,D:总是;
将调查结果的数据进行了整理、绘制成部分统计图如下:
![]()
请根据图中信息,解答下列问题:
(1)该调查的样本容量为 ,a= %,b= %,“常常”对应扇形的圆心角为 ;
(2)请你补全条形统计图;
(3)若该校有3200名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生各有多少名?
参考答案:
【答案】(1)200,12,36,108° (2)作图见解析 (3)960,1152
【解析】
(1)“有时”的人数除以其所占的百分比即可得到样本总量,“有时”的人数除以样本总量即可得到
,“总是”的人数除以样本总量即可得到
,“常常”所占的百分比乘以360°即可求出其对应扇形的圆心角的度数;
(2)求出“常常”的人数,据此补全条形统计图即可;
(3)样本总量乘以“常常”和“总是”所占的比例即可进行估算.
(1)
(人)
![]()
![]()
“常常”对应扇形的圆心角
故答案为:200,12,36,108°;
(2)
(人)
故补全条形统计图如下;
![]()
(3)
(人)
(人)
故其中“常常”对错题进行整理、分析、改正的学生有960名,“总是”对错题进行整理、分析、改正的学生有1152名.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是( )

A.70B.74C.144D.148
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:

(1)作出△ABC绕点A逆时针旋转90°的△AB1C1,再作出△AB1C1关于原点O成中心对称的△A1B2C2.
(2)点B1的坐标为 ,点C2的坐标为 .
(3)请直接写出以A1、B2、C2为顶点的平行四边形的第四个顶点D的坐标:
-
科目: 来源: 题型:
查看答案和解析>>【题目】布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同。从中随机摸出一个小球记下数字为x,再从剩下的三个球中随机摸出一个球记下数字为y,点A的坐标为(x,y).运用画树状图或列表的方法,写出A点所有可能的坐标,并求出点A在反比例函数
图象上的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD中,AE⊥BC于点E,∠BAE=30°,AD=4cm.
(1)求菱形ABCD的各角的度数;
(2)求AE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.
小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们定义:如图1,在△ABC中,把AB绕点A按顺时针方向旋转α(0°<α<180°)得到AB′,把AC绕点A按逆时针方向旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.

(1)特例感知:在图2、图3中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=______BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为______.
(2)精确作图:如图4,已知在四边形ABCD内部存在点P,使得△PDC是△PAB的“旋补三角形”(点D的对应点为点A,点C的对应点为点B),请用直尺和圆规作出点P(要求:保留作图痕迹,不写作法和证明)
(3)猜想论证:在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
相关试题