【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)
![]()
参考答案:
【答案】8+8![]()
【解析】试题分析:如图,作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.
试题解析:如图,作AD⊥BC,BH⊥水平线,
由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,
∴∠ABC=30°,∠ACB=45°,
∵AB=32m,
∴AD=CD=16m,BD=ABcos30°=
m,
∴BC=CD+BD=(
+16)m,
则BH=BCsin30°=
m,
答:这架无人飞机的飞行高度为
m.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且点A的坐标是(1,0).

(1)直线y=
x﹣
经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的函数表达式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一条直线上依次有A、B、C三地,自行车爱好者甲、乙两人同时分别从A、B两地出发,沿直线匀速骑向C地.已知甲的速度为20 km/h,设甲、乙两人行驶x(h)后,与A地的距离分别为y1 、y2 (km), y1 、y2 与x的函数关系如图所示.
(1)求y2与x的函数关系式;
(2)若两人在出发时都配备了通话距离为3km的对讲机,求甲、乙两人在骑行过程中可以用对讲机通话的时间.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.

请根据所给信息解答以下问题:
(1)请补全条形统计图;
(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A的概率.
(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(﹣1,0),点B(3,0).在第三象限内有一点M(﹣2,m).
(1)请用含m的式子表示△ABM的面积;
(2)当m=-
时,在y轴上有一点P,使△BMP的面积与△ABM的面积相等,请求出点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b分别交y轴、x轴于C、D两点,与反比例函数y=
(x>0)的图象交于A(m,8),B(4,n)两点.(1)求一次函数的解析式;
(2)根据图象直接写出kx+b﹣
<0的x的取值范围;(3)求△AOB的面积.

相关试题