【题目】已知△ABC内接于⊙O,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出∠BAC的平分线(保留作图痕迹,不写作法). ![]()
(1)如图1,P是BC边的中点;
(2)如图2,直线l与⊙O相切于点P,且l∥BC.
参考答案:
【答案】
(1)解:如图所示,AD 即为所求;
![]()
(2)解:如图所示,AE即为所求.
![]()
【解析】(1)连接OP并延长,交⊙O于D,根据P是BC边的中点,可得OD垂直平分BC,进而得到点D为
的中点,连接AD,则∠BAD=∠CAD,因此AD即为所求;(2)连接PO并延长,交⊙O于E,根据直线l与⊙O相切于点P,且l∥BC,可得PE垂直平分BC,进而得到点E为
的中点,连接AE,则∠BAE=∠CAE,因此AE即为所求.
【考点精析】解答此题的关键在于理解垂径定理的相关知识,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,以及对圆周角定理的理解,了解顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下5个结论:①x≤1时,y随x的增大而增大;②abc>0;③b<a+c;④4a+2b+c>0;⑤3a﹣b<0,其中正确的结论有(填上所有正确结论的序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,
=
,且AB=5,BD=4,求弦DE的长. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1 .

(1)画出旋转后的△A1OB1 , 点A1的坐标为;
(2)在旋转过程中,点B经过的路径为
,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】小源的父母决定中考之后带她去旅游,初步商量有意向的四个景点分别为:A.明月山,B.庐山,C.婺源,D.三清山.由于受到时间限制,只能选两个景点,于是小源的父母决定通过抽签选择,用四张小纸条分别写上四个景点做成四个签(外表无任何不同),让小源随机抽两次,每次抽一个签,每个签抽到的机会相等.
(1)小源最希望去婺源,则小源第一次恰好抽到婺源的概率是多少;
(2)除婺源外,小源还希望去明月山,求小源抽到婺源、明月山两个景点中至少一个的概率是多少.(通过“画树状图”或“列表”进行分析) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B、C、D都在半径为4的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.

(1)求证:AC是⊙O的切线;
(2)求弦BD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】冬天来了,晒衣服成了头疼的事情,聪明的小华想到一个好办法,在家后院地面(BD)上立两根等长的立柱AB、CD(均与地面垂直),并在立柱之间悬挂一根绳子.由于挂的衣服比较多,绳子的形状近似成了抛物线y=ax2﹣0.8x+c,如图1,已知立柱AB=CD=2.6米,BD=8米.

(1)求绳子最低点离地面的距离;
(2)为了防止衣服碰到地面,小华在离AB为3米的位置处用一根垂直于地面的立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.6米,求MN的长.
相关试题