【题目】如图①,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图①的图形称之为“8字形”.
(1)如图①,若∠A=∠D,判断∠C与∠B的数量关系,并说明理由;
(2)如图②,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N,试解答下列问题:
①仔细观察,在图②中有 个“8字形”;
②∠B=80°,∠C=100°,求∠P的度数.
![]()
参考答案:
【答案】(1)∠C=∠B(2)①6②90
【解析】
(1)利用三角形的内角和定理表示出∠AOD与∠BOC,再根据对顶角相等可得∠AOD=∠BOC,然后整理即可得解;
(2)①根据“8字形”的结构特点,根据交点写出“8字形”的三角形,然后确定即可;
②根据三角形的内角和定理求出∠ODB∠OAC,再根据角平分线的定义求出∠CAM+∠C∠PDM,然后利用“8字形”的关系式列式整理即可得解;
解:(1)在△AOC中,∠AOC=180°∠A∠C,
在△BOD中,∠BOD=180°∠B∠D,
∵∠AOC=∠BOD(对顶角相等),
∴180°∠A∠C=180°∠B∠D,
∴∠A+∠D=∠B+∠C;
∵∠A=∠D,
∴∠C=∠B.
故答案为:∠C=∠B.
(2)①交点有点M、O、N,
以M为交点有1个,为△AMC与△DMP,
以O为交点有4个,为△AOC与△DOB,△AOM与△DON,△AOM与△DOB,△DON与△AOC,
以N为交点有1个,为△ANP与△DNB,
所以,“8字形”图形共有6个;
∵∠C=100°,∠B=80°,
∴∠OAC+100°=∠ODB+80°,
∴∠ODB∠OAC=20°,
∵AP、DP分别是∠CAB和∠BDC的角平分线,
∴∠CAM=
∠OAC,∠PDM=
∠ODB,
又∵∠CAM+∠C=∠PDM+∠P,
∴∠P=∠CAM+∠C∠PDM=
(∠OAC∠ODB)+∠C=
×(20°)+100°=90°;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,为了测量出楼房AC的高度,从距离楼底C处60
米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:
的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈
,计算结果用根号表示,不取近似值).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC边上的高,AE、BF分别是∠BAC,∠ABC的平分线,∠DAC=20,
⑴若∠ABC=60°,求∠EAD的度数;
⑵AE、BF相交于点G,求∠AGB的度数。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:
≈1.414,
≈1.732)
-
科目: 来源: 题型:
查看答案和解析>>【题目】文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有A、B、C三种不同型号的卡片,每种卡片各有9张.其中A型卡片是边长为3的正方形,B型卡片是相邻两边长分别为3、1的长方形,C型卡片是边长为1的正方形.从其中取若干张卡片(每种卡片至少取1张),若把取出的这些卡片拼成一个正方形,则所拼正方形的边长的最大值是______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABCD=
AM2.其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4
相关试题