【题目】在平面直角坐标系中,A(a,0),B(0,b),a,b满足
=0,C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.
(1)求∠OAB的度数
(2)当点P运动时,PE的长是否变化?若变化,请说明理由;若不变,请求PE的长
(3)若∠OPD=45度,求点D的坐标
![]()
参考答案:
【答案】(1)45°;(2)3;(3)(
,0)
【解析】分析:(1)根据非负数的性质即可求得a、b的值,从而得到△AOB是等腰直角三角形,据此可求;
(2)根据等腰直角三角形的性质以及三角形的外角的性质可以得到∠POC=∠DPE,即可得证△POC≌△DPE,则OC=PE,OC的长度可根据等腰直角三角形的性质可求;
(3)利用等腰三角形的性质,以及外角的性质,证得∠POC=∠DPE,即可得到△POC≌△DPE,根据全等三角形的对应边相等,即可求得OD的长,从而求得D的坐标.
详解:(1)根据题意得:a=b,a-3=0.解得:a=b=3,∴OA=OB
又∵∠AOB=90°,∴△AOB是等腰直角三角形,∠OAB=45°。
(2)PE值不变。
理由:∵△AOB是等腰直角三角形,且AC=BC, ∴∠AOC=∠BOC=45°,
又因OC垂直AB于C,故PO=PD,∴∠POD=∠PDO. 又因∠POD=45°+∠POC,
∠POD=45°+∠DPE∴∠POC=∠DPE。
∴在△POC和△DPE中,
∴△POC≌△DPE. ∴OC=PE
又因OC=
AB=3, ∴PE=3
(3)∵PO=PD, ∴∠POD=∠PDO=
=67.5°
∴∠PDA=180°-∠PDO=180°-67.5°=112.5°
∵∠POD=∠A+∠APD,
∴∠APD=67.5°-45°=22.5°, ∴∠BPO=180°-∠OPD-∠APD=112.5°
∴∠PDA=∠BPO
∴在△POB和△DPA中,
∴△POB≌△DPA(AAS)
PA=OB= 3
, ,DA=PB= 6-3
∴ OD=OA-DA=3
-(6-3
)=6
-6
∴ D(6
-6,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是⊙O的内接三角形且AB=AC,BD是⊙O的直径,过点A做AP∥BC交DB的延长线于点P,连接AD.

(1)求证:AP是⊙O的切线;
(2)若⊙O的半径是2,cos∠ABC=
,求AB的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①,
的内角
的平分线与外角
的平分线相交于
点,
,求
的度数.
(2)如图,四边形
中,设
,
,
为四边形
的内角
与外角
的平分线所在直线相交而形成的锐角.①如图②,若
,求
的度数.(用
、
的代数式表示)②如图③,若
,请在图③中画出
,并求得
.(用
、
的代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某班研究性学习小组在一次综合实践活动中发现如下问题:在楼底的B处测得河对岸大厦上悬挂的条幅底端D的仰角为26°,在楼顶A处测得条幅顶端C的仰角为50°.若楼AB高度为18米,条幅CD长度为46米,请你帮助他们求出楼与大厦之间的距离BE及大厦的高度CE.(参考数据:sin26°≈0.44,sin50°≈0.77,tan26°≈0.49,tan50°≈1.19).

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场将进价为4000元的电视以4400元售出,平均每天能售出6台.为了配合国家财政推出的“节能家电补贴政策”的实施,商场决定采取适当的降价措施,调查发现:这种电视的售价每降价50元,平均每天就能多售出3台.
(1)现设每台电视降价x元,商场每天销售这种电视的利润是y元,请写出y与x之间的函数表达式.(不要求写出自变量的取值范围)
(2)每台电视降价多少元时,商场每天销售这种电视的利润最高?最高利润是多少?
(3)商场要想在这种电视销售中每天盈利3600元,同时又要使百姓得到更多实惠,每台电视应降价多少元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于3600元? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为2
,对角线AE,DF相交于点O,连接OC.求OC的长度. 
相关试题