【题目】如图,C是线段AE上一点,△ABC、△CDE都是等边三角形,AD与BC交于点M,BE与CD交于点N。
试说明:(1)AD=BE;(2)MN//AE。
![]()
参考答案:
【答案】(1)见解析;(2)见解析
【解析】试题分析:(1)利用大小等边三角形的边相等,再由公共角得到∠ACD=BCE,利用SAS证明△ACD和△BCE全等.
(2)先证明△MCD≌△NCE,再证明△MCN为等边三角形,所以易得MN∥AE.
试题解析:
(1)在△ACD和△BCE中,
AC=BC,
∠ACD=BCE,
CD=CE,
△ACD≌△BCE(SAS),
∴AD=BE.
(2)由(1)∠ADC=∠BEC,MC=MC,CE=CD,
△MCD≌△NCE得MC=NC, ∠MCN=60°,
∴△MCN为等边三角形,
∴∠MNC=∠NCE=60°,
∴MN∥AE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:1﹣2+2×(﹣3)2 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.
应聘者
面试
笔试
甲
87
90
乙
91
82
若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?
-
科目: 来源: 题型:
查看答案和解析>>【题目】用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )
A. 每两次必有1次正面向上 B. 可能有5次正面向上
C. 必有5次正面向上 D. 不可能有10次正面向上
-
科目: 来源: 题型:
查看答案和解析>>【题目】(14分)如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A、G重合),设运动时间为t秒。连接BM并延长交AG于N。

(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;
(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=NH;
(3)过点M分别用AB、AD的垂线,垂足分别为E、F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).
回答下列问题:
(1)补全条形图;
(2)写出这20名学生每人植树量的众数、中位数;
(3)请你计算平均数,并估计这260名学生共植树多少棵?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场经营A种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请用含x的代数式表示该玩具的销售量.
(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
(3)该商场计划将(2)中所得的利润的一部分资金采购一批B种玩具并转手出售,根据市场调查并准备两种方案,方案①:如果月初出售,可获利15%,并可用本和利再投资C种玩具,到月末又可获利10%;方案②:如果只到月末出售可直接获利30%,但要另支付仓库保管费350元,请问商场如何使用这笔资金,采用哪种方案获利较多?
相关试题