【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论: ①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中结论正确的是 . (填正确结论的序号)![]()
参考答案:
【答案】①②⑤
【解析】解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,∴b2>4ac,故①正确; ②抛物线开口向上,得:a>0;
抛物线的对称轴为x=﹣
=1,b=﹣2a,故b<0;
抛物线交y轴于负半轴,得:c<0;
所以abc>0;
故②正确;
③∵抛物线的对称轴为x=﹣
=1,b=﹣2a,
∴2a+b=0,故2a﹣b=0错误;
④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);
由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故④错误;
⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);
当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确;
所以这结论正确的有①②⑤.
所以答案是:①②⑤.
【考点精析】通过灵活运用二次函数图象以及系数a、b、c的关系,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=x2+bx+c与x轴交于点A、B,AB=2,与y轴交于点C,对称轴为直线x=2,对称轴交x轴于点M.

(1)求抛物线的函数解析式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是菱形,则点D的坐标为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在平行四边形ABCD中,AE⊥BC交于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )

A.130°
B.150°
C.160°
D.170° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于( )

A.70°
B.80°
C.60°
D.50° -
科目: 来源: 题型:
查看答案和解析>>【题目】小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,这个三角形面积S最大?最大面积是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2﹣2
x+m=0有两个不相等的实数根.
(1)求实数m的取值范围;
(2)在(1)的条件下,化简:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).
(1)求此抛物线的解析式;
(2)求此抛物线的对称轴和顶点坐标;
(3)设抛物线的顶点为C,试求△CAO的面积.
相关试题