【题目】小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:
(1)他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,
是
边上的中线,若
,求证:
.
(2)如图②,已知矩形,如果在矩形外存在一点
,使得
,求证:
.(可以直接用第(1)问的结论)
(3)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边
与
的数量关系.
【答案】(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用等腰三角形的性质和三角形内角和即可得出结论;
(2)先判断出OE=AC,即可得出OE=
BD,即可得出结论;
(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.
(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,
(2)如图②,连接与
,交点为
,连接
四边形
是矩形
(3)如图3,过点做
于点
四边形
是矩形
,
是等边三角形
,
由(2)知,
在
中,
,
科目:初中数学 来源: 题型:
【题目】如图,OA是⊙O的半径,点E为圆内一点,且OA⊥OE,AB是⊙O的切线,EB交⊙O于点F,BQ⊥AF于点Q.
(1)如图1,求证:OE∥AB;
(2)如图2,若AB=AO,求的值;
(3)如图3,连接OF,∠EOF的平分线交射线AF于点P,若OA=2,cos∠PAB=,求OP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对某一个函数给出如下定义:若存在实数,对于函数图象上横坐标之差为1的任意两点
,
,
都成立,则称这个函数是限减函数,在所有满足条件的
中,其最大值称为这个函数的限减系数.例如,函数
,当
取值
和
时,函数值分别为
,
,故
,因此函数
是限减函数,它的限减系数为
.
(1)写出函数的限减系数;
(2),已知
(
)是限减函数,且限减系数
,求
的取值范围.
(3)已知函数的图象上一点
,过点
作直线
垂直于
轴,将函数
的图象在点
右侧的部分关于直线
翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数
,直接写出
点横坐标
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(Ⅰ)如图1,在菱形中,已知
,
,抛物线
(
)经过
,
,
三点.
(1)点的坐标为__________,点
的坐标为__________;
(2)求抛物线的解析式.
(Ⅱ)如图2,点是
的中点,点
是
的中点,直线
垂直
于点
,点
在直线
上.
(3)当的值最小时,则点
的坐标为____________;
(4)在(3)的条件下,连接、
、
得
,问在抛物线上是否存在点
,使得以
,
,
为顶点的三角形与
相似?若存在,请求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象与一次函数
的图象相交于点A(1,4)和点B(n,
).
(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017江西省,第12题,3分)已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为______________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形中,
是对角线
上的一点,点
在
的延长线上,
交
于
,
.
(1)求证:;
(2)连接,若
,求
;
(3)如图2,若把正方形改为菱形
,其他条件不变,当
时,猜想
与
的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com