【题目】在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).
(1)用树状图或列表法列举点M所有可能的坐标;
(2)求点M(x,y)在函数y=-x+1的图象上的概率;
(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.
参考答案:
【答案】(1)答案见试题解析;(2)
;(3)
.
【解析】试题分析:(1)用树状图法展示所有9种等可能的结果数;
(2)根据一次函数图象上点的坐标特征,从9个点中找出满足条件的点,然后根据概率公式计算;
(3)利用点与圆的位置关系找出圆上的点和圆外的点,由于过这些点可作⊙O的切线,则可计算出过点M(x,y)能作⊙O的切线的概率.
解:(1)画树状图:
![]()
共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);
(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),
所以点M(x,y)在函数y=﹣x+1的图象上的概率=
;
(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),
所以过点M(x,y)能作⊙O的切线的点有5个,
所以过点M(x,y)能作⊙O的切线的概率=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数的图象经过点B(﹣2,﹣1)与y轴交点为C与x轴交点为D.

(1)求一次函数的解析式;
(2)点P是x轴上一点,且△ADP的面积是△AOD面积的2倍,直接写出点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列乘法运算中不能用平方差公式计算的是( )
A. (x+1)(x-1) B. (x-1)(-x+1)
C. (-x+1)(-x-1) D. (x+1)(-x+1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】长方形的面积是3a2-3ab+6a,一边长为3a,则它的另一条边长为( )
A. 2a-b+2 B. a-b+2
C. 3a-b+2 D. 4a-b+2
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a+b=5,ab=A,则化简(a-2)(b-2)的结果是( )
A. 6 B. A-6
C. A+6 D. -6
-
科目: 来源: 题型:
查看答案和解析>>【题目】2010年4月14日上午7时49分,我国青海省玉树藏族自治州玉树县发生里氏7.1级的强烈地震,地震造成重大人员伤亡和财产损失.“地震无情,人间有爱”,某慈善机构将募捐得到的两批物资第一时间迅速运往灾区,第一批共480吨,用8节火车皮和20辆汽车正好装完;第二批共524吨,用10节火车皮和6辆汽车正好装完,求每节火车皮和每辆汽车平均各装多少吨?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.
相关试题