【题目】古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1 , 第二个三角形数记为x2 , …第n个三角形数记为xn , 则xn+xn+1=


参考答案:

【答案】(n+1)2
【解析】解:∵x1=1,
x2═3=1+2,
x3=6=1+2+3,
x4═10=1+2+3+4,
x5═15=1+2+3+4+5,

∴xn=1+2+3+…+n= ,xn+1=
则xn+xn+1= + =(n+1)2
故答案为:(n+1)2
根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即xn=1+2+3+…+n= 、xn+1= ,然后计算xn+xn+1可得.

关闭