【题目】如图,点B、F、C、E在同一条直线上,点A、D在直线BC的异侧,AB=DE,AC=DF,BF=EC.
(1)求证:△ABC≌△DEF;
(2)若∠BFD=150°,求∠ACB的度数.
![]()
参考答案:
【答案】(1)见解析;(2)30°
【解析】
(1)根据BF=EC,可以得到BC=EF,然后根据题目中的条件,利用全等三角形的判定即可证明结论成立;
(2)根据邻补角互补和全等三角形的性质可以得到∠ACB的度数.
(1)∵BF=EC,∴BF+FC=EC+FC,∴BC=EF.
在△ABC和△DEF中,∵
,∴△ABC≌△DEF(SSS);
(2)∵∠BFD=150°,∠BFD+∠DFE=180°,∴∠DFE=30°.
由(1)知:△ABC≌△DEF,∴∠ACB=∠DFE,∴∠ACB=30°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠C=90°时,测得AC=2
,当∠C=120°时,如图2,AC=( ) 
A.2
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,线段OQ所扫过过的面积为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在长方形ABCD中,AB=6厘米,BC=12厘米,点P沿AB边从点A开始向点B以1厘米/秒的速度移动,点Q沿BC从点B开始向点C以2厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6).
(1)当PB=2厘米时,求点P移动多少秒?
(2)t为何值时,△PBQ为等腰直角三角形?
(3)求四边形PBQD的面积,并探究一个与计算结果有关的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C是线段AB上除A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边三角形ACD和等边三角形BEC,连结AE交DC于M,连结BD交CE于N,AE与BD交于F
(1)求证:AE=BD;
(2)连结MN,仔细观察△MNC的形状,猜想△MNC是什么三角形?说出你的猜想,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,

(1)求证:△ABE≌△BCD;
(2)求出∠AFB的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ABC=90°,AB=2,BC=4,现将△ABC绕顶点B顺时针方向旋转△A′BC′的位置,此时A′C′与BC的交点D是BC的中点,则线段C′D的长度是( )

A.
B.
C.
D.2
相关试题