【题目】(1)如果
=0,求[(x2+y2)+2y(x-y)-(x-y)(x+3y)]÷4y的值.
(2)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-
.
参考答案:
【答案】(1)原式=
,把y=-2代入得 原式=﹣1;(2)4-2ab ,5
【解析】试题分析:(1)据非负数性质得到
,
,解得
,然后利用整式的混合运算求值.(2) 原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项先计算乘方运算,再计算除法运算,合并得到最简结果,把ab的值代入计算即可求出值.
本题解析:(1)由题意得:
,
,则
所以[(x2+y2)+2y(x-y)-(x-y)(x+3y)]÷4y=
=
=
(2) 原式=
,当ab=12时,原式=4+1=5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式中,合并同类项正确的是( )
A. 2x+x=2x2 B. 2x+x=3x C. a2+a2=a4 D. 2x+3y=5xy
-
科目: 来源: 题型:
查看答案和解析>>【题目】在半径为R的圆形钢板上,挖去四个半径都为r的小圆.若R=16.8,剩余部分的面积为272π,则r的值是( )
A. 3.2 B. 2.4 C. 1.6 D. 0.8
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.
(1)求抛物线的解析式.
(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.
①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为
?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程(x﹣4)2=2x﹣3化为一般式是( )
A. x2﹣10x+13=0 B. x2﹣10x+19=0 C. x2﹣6x+13=0 D. x2﹣6x+19=0
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,
≈1.73).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”。
(1)请问一元二次方程x2-3x+2=0是倍根方程吗?如果是,请说明理由。
(2)若一元二次方程ax2+bx-6=0是倍根方程,且方程有一个根为2,求a、b的值?
相关试题