【题目】如图,直线
上有
两点,
, 点
是线段
上的一点,
.若动点
,
分别从
同时出发,向右运动,点
的速度为
.点
的速度为
.设运动时间为
,当点
和点
重合时,
两点停止运动.
![]()
(1)当
为何值时,
?
(2)当点
经过点
时,动点
从点
出发,以
的速度也向右运动,当点
追上点
后立即返回,以
的速度向点
运动,遇到点
后再立即返回,以
的速度向点
运动,如此往返,当点
与点
重合时,
两点停止运动,此时点
也停止运动,在此过程中,点
行驶的总路程是多少?
参考答案:
【答案】(1)2s或6.8s(2)20cm
【解析】
(1)先由OA=2OB结合AB=OA+OB=18即可求出OA、OB的长度;分两种情况,由两点间的距离公式结合2OP-OQ=4即可得出关于t的一元一次方程,解之即可得出结论;
(2)点M运动的时间就是点P从点O开始到追到点Q的时间,用这个时间乘以速度即可.
解:(1)∵AB=18cm,OA=2OB,
∴OA+OB=3OB=AB=18cm,
解得:OB=6cm,
OA=2OB=12cm.
12÷3=4秒,当0<t≤4时,如图,
![]()
AP=3t,OP=12-3t,BQ=t,OQ=6+t,
∵2OP-OQ=4,
∴2(12-3t)-(6+t)=4,
解得
t=2;
当点P与点Q重合时,
3t=18+t,
t=9,
当4<t≤9时,如图,
![]()
OP=3t-12,OQ=6+t,
则2(3t-12)-(6+t)=4,
解得t=6.8.
故当t为2s或6.8s时,2OP-OQ=4;
(2)4×(9-4)=20(cm).
答:在此过程中,点M行驶的总路程是20cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,
(1)随机从A组抽取一张,求抽到数字为2的概率;
(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次被调查的学生共有 人.
(2)请将统计图2补充完整.
(3)统计图1中B项目对应的扇形的圆心角是 度.
(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.
(1)判断BF与AC的数量关系并说明理由;
(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.

【答案】(1)BF=AC,理由见解析;(2)NE=
AC,理由见解析.【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=
AC.试题解析:
(1)BF=AC,理由是:
如图1,∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵
,∴△ADC≌△BDF(AAS),
∴BF=AC;
(2)NE=
AC,理由是:如图2,由折叠得:MD=DC,
∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,
即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,
∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=
AC.【题型】解答题
【结束】
19【题目】某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:
测试项目
测试成绩/分
甲
乙
丙
笔试
75
80
90
面试
93
70
68
根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分.
(1)分别计算三人民主评议的得分;
(2)根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3…每个正方形四条边上的整点的个数.按此规律推算出正方形A10B10C10D10四条边上的整点共有______个.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B的坐标分别为(-2,0),(
,0),AD=2,∠DAB=60°点P从点A出发沿A→D→C运动到点C,连接PO.当PO=OB时,点P的坐标为___.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
相关试题