【题目】如图,以BC为直径的圆交△ABC的两边AB、AC于点D、E,点E恰为AC的中点,BF为△ABC的外角平分线,点F在圆上,请你仅用一把无刻度的直尺,过点A作一条线段,将△ABC分成面积相等的两部分. ![]()
参考答案:
【答案】解:如图,连接BE,EF交直径BC于点O,即点O为圆的圆心,连接AO,即为所求作的线段. ![]()
理由:∵BC为圆的直径,
∴BE⊥AC,
∵点E是AC中点,
∴∠ABE=∠CBE=
∠ABC,
∵BF为△ABC的外角的平分线,
∴∠CBF=
∠CBG,
∴∠EBF=∠EBC+∠CBF=
(∠ABC+∠CBG)=90°,
∵BC为直径,
∴∠BFC=90°,
∴∠BEC=∠EBF=∠BFC=90°,
∴四边形EBFC是矩形,
∴点O是BC中点,即:为圆心;
∴AO是△ABC的边BC中线,
即:AO将△ABC分成面积相等的两部分,
【解析】利用等腰三角形的三线合一,判断出BE是∠ABC的平分线,进而判断出∠EBF=90°,再判断出四边形EBFC是矩形,点O为矩形对角线的交点即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形纸片ABCD中,AB=14,BC=8,点E为边BC上一点,且BE=5,将纸片沿过点E的一条直线l翻折,使点B落在直线CD上,若l与矩形的边的另一个交点为F,则EF的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=
,其中
为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)将一张长方形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°.
(1)求∠1的度数;
(2)求证:△EFG是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)

相关试题