【题目】在△ABC中BC=2,AB=2
,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为 .
参考答案:
【答案】2
【解析】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根, ∴△=16﹣4b=0,
∴AC=b=4,
∵BC=2,AB=2
,
∴BC2+AB2=AC2 ,
∴△ABC是直角三角形,AC是斜边,
∴AC边上的中线长=
AC=2;
所以答案是:2.
【考点精析】本题主要考查了求根公式和直角三角形斜边上的中线的相关知识点,需要掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;直角三角形斜边上的中线等于斜边的一半才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,是某电信公司甲、乙两种业务:每月通话费用y(元)与通话时间x(分)之间的函数关系.某企业的周经理想从两种业务中选择一种,如果周经理每个月的通话时间都在100分钟以上,那么选择________种业务合算.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一套三角尺(分别含
,
,
和
,
,
的角)按如图所示摆放在量角器上,边
与量角器
刻度线重合,边
与量角器
刻度线重合,将三角尺
绕量角器中心点
以每秒
的速度顺时针旋转,当边
与
刻度线重合时停止运动,设三角尺
的运动时间为
.
(1)当
时,边
经过的量角器刻度线对应的度数是 度;(2)若在三角尺
开始旋转的同时,三角尺
也绕点
以每秒
的速度逆时针旋转,当三角尺
停止旋转时,三角尺
也停止旋转.①当
为何值时,边
平分
;②在旋转过程中,是否存在某一时刻使
,若存在,请求出
的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中任意一点P(x0,y0)经平移后对应点为P′(x0+3,y0+4),将△ABC作同样的平移得到△DEF,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:

(1)直接写出点D、E、F的坐标;
(2)画出
,若
,
,
,
___________,
______.(3)若将线段
沿某个方向进行平移得到线段MN,点 B(-1,-2)的对应点为 M ( m,0),则点 C(0,1)的对应点 N 的坐标为________.(用含 m的式子表示) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2元/(吨·千米),铁路运价为1.5元/(吨·千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.

(1)求:该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?
(2)这批产品的销售款比原料费与运输费的和多多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.
(1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若运送三种苹果所获利润的情况如下表所示:

设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W最大,并求出最大利润.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=4-x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D。
(1)当点M在AB上运动时,四边形OCMD的周长为________;
(2)当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a (0<a≤4),在平移过程中:
①当平移距离a=1时, 正方形OCMD与△AOB重叠部分的面积为________;
②当平移距离a是多少时,正方形OCMD的面积被直线AB分成l:3两个部分?


相关试题