【题目】如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有个. ![]()
参考答案:
【答案】4或2
【解析】解:以O为圆心,以OA为半径画弧交x轴于点P和P′,此时三角形是等腰三角形,即2个; ![]()
以A为圆心,以OA为半径画弧交x轴于点P″(O除外),此时三角形是等腰三角形,即1个;
作OA的垂直平分线交x轴于一点P1 ,
则AP=OP,
此时三角形是等腰三角形,即1个;
2+1+1=4,
当OA与x轴正半轴夹角等于60°的时候,图中的P1,P'和P'会重合,是一个点,加上原来的负半轴的P点,总共2个点,
所以答案是4或2.
【考点精析】解答此题的关键在于理解等腰三角形的判定的相关知识,掌握如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.
(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.
(2)如果△ABC的面积为5cm2 , 求四边形ABDE的面积.
(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在等腰△ABC中,
(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;
(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.
①根据题意在图2中补全图形;
②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:
思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;
思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;
思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;
……
请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)
(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,若AD∥BC,∠A=∠D.

(1)猜想∠C与∠ABC的数量关系,并说明理由;
(2)若CD∥BE,∠D=50°,求∠EBC的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=5,AC=7,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB、AC相交于点M、N,且MN∥BC,则△AMN的周长等于 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .

相关试题