【题目】如图,△ABC中,D是BC上的一点,AB=10,BD=6,AD=8,AC=17.
(1)判断AD与BC的位置关系,并说明理由;
(2)求△ABC的面积.
![]()
参考答案:
【答案】(1)AD⊥BC.理由见解析; (2) 84.
【解析】
(1)根据AB=10,BD=6,AD=8,可得BD2+AD2=AB2,根据勾股定理的逆定理可进行判定△ABD是直角三角形,即∠ADB=90°,
(2) 在Rt△ACD中,根据CD2=AC2-AD2=172-82=152,可得CD=15,进而可得S△ABC=
BC·AD=
(BD+CD)·AD=
×21×8=84
(1)AD⊥BC.理由如下:
因为BD2+AD2=62+82=102=AB2,
所以△ABD是直角三角形,且∠ADB=90°,
所以AD⊥BC.
(2)在Rt△ACD中,因为CD2=AC2-AD2=172-82=152,所以CD=15,
所以S△ABC=
BC·AD=
(BD+CD)·AD=
×21×8=84.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC
重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )

A. 3 B. 4
C. 5 D. 6
-
科目: 来源: 题型:
查看答案和解析>>【题目】从﹣3,﹣2,﹣1,0,1,2这六个数字中随机抽取一个数,记为a,a的值即使得不等式组
无解,又在函数y=
的自变量取值范围内的概率为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=15,则S2的值是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,求GF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形ABCD中,AB=CD=24,AD=BC=50,E是AD上一点,且AE∶DE=9∶16,判断△BEC的形状.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我校初三学子在不久前结束的体育中考中取得满意成绩,赢得2016年中考开门红.现随机抽取了部分学生的成绩作为一个样本,按A(满分)、B(优秀)、C(良好)、D(及格)四个等级进行统计,并将统计结果制成如下2幅不完整的统计图,如图,请你结合图表所给信息解答下列问题:

(1)将折线统计图在图中补充完整;此次调查共随机抽取了名学生,其中学生成绩的中位数落在等级;
(2)为了今后中考体育取得更好的成绩,学校决定分别从成绩为满分的男生和女生中各选一名参加“经验座谈会”,若成绩为满分的学生中有4名女生,且满分的男、女生中各有2名体育特长生,请用列表或画树状图的方法求出所选的两名学生刚好都不是体育特长生的概率.
相关试题