【题目】如下图所示,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3, 已知A(1,3),A1 (2,3), A2 (4,3), A3 (8,3),B(2,0), B1 (4,0), B2 (8,0), B3 (16,0),观察每次变换前后的三角形有何变化,找出规律,按此变换规律将△OA3B3变换成△OAnBn, ,则An的坐标是_______ ,Bn的坐标是_________ .
.![]()
参考答案:
【答案】2n,3;2n+1,0
【解析】试题分析:观察不难发现,点A系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据此规律写出即可.
解:∵A(1,3),A1(2,3),A2(4,3),A3(8,3),
2=21、4=22、8=23,
∴An(2n,3),
∵B(2,0),B1(4,0),B2(8,0),B3(16,0),
2=21、4=22、8=23,16=24,
∴Bn(2n+1,0).
故答案为:2n,3;2n+1,0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点(-1,-2)所在的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果P(m-1,m)在y轴上,那么点P的坐标是( )
A. (-2,0) B. (0,-2) C. (1,0) D. (0,1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:
①∠BOE=
°;②OF平分∠BOD;
③∠POE=∠BOF;
④∠POB=2∠DOF.
其中正确的个数有多少个?( )

A.1 B.2 C.3 D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,一次函数y
=ax+b(a,b为常数,且a≠0)与反比例函数y
=
(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;
(2)连结OA、OB,求△AOB的面积;
(3)直接写出当y1<y2<0时,自变量x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将纸片△ABC沿DE折叠使点A落在A′处的位置.

(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.
(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是 .
(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是( )
A.b<﹣a<﹣b<a
B.b<﹣b<﹣a<a
C.b<﹣a<a<﹣b
D.﹣a<﹣b<b<a
相关试题