【题目】如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点
的坐标为_______.
![]()
参考答案:
【答案】(2,2)
【解析】
根据中心对称的性质找出部分Pn的坐标,根据坐标的变化找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(-2,2),P6n+3(0,-2),P6n+4(2,2),P6n+5(-2,0)(n为自然数)”,依此规律即可得出结论.
观察,发现规律:P0(0,0),P1(2,0),P2(-2,2),P3(0,-2),P4(2,2),P5(-2,0),P6(0,0),P7(2,0),…,
∴P6n(0,0),P6n+1(2,0),P6n+2(-2,2),P6n+3(0,-2),P6n+4(2,2),P6n+5(-2,0)(n为自然数).
∵2020=6×336+4,
∴P2020(2,2).
故答案为:(2,2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D(10,0).
(1)如图①,当点C与点O重合时,求直线BD的表达式;
(2)如图②,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的☉B与y轴相切(切点为C)时,求点B的坐标;
(3)如图③,点C从点O沿y轴向下移动,当点C的坐标为C(0,-2
)时,求∠ODB的正切值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED
证明:∵BE=FC
∴BE+EF=FC+EF(____________________________)
即:___________
∵AB∥CD
∴∠B=∠C(_________________________)
在△ABF和△DCE中,
∠A=∠D, ∠B=∠C, BF=CE
∴△ABF≌△DCE(________)
∴∠AFB=∠DEC(_________________________________)
∴AF∥ED(__________________________________)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有__次.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l是四边形ABCD的对称轴.若AD∥BC,则下列结论:(1)AB∥CD;(2)AB=BC;(3)BD平分∠ABC;(4)AO=CO.其中正确的有______(填序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.如图,已知⊙O的半径为5,则抛物线
与该圆所围成的阴影部分(不包括边界)的整点个数是( )
A. 24 B. 23 C. 22 D. 21
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明口袋中装有5个白球和6个红球,这些球除颜色外完全相同,充分搅匀后随机摸球.
(1)如果先摸出一白球,将这个白球放回,再摸出一球,那么它是白球的概率是多少?
(2)如果先摸出一白球,这个白球不放回,再摸出一球,那么它是白球的概率是多少?
(3)如果先摸出一红球,这个红球不放回,再摸出一球,那么它是白球的概率是多少?
相关试题